
Lecture 4: IP Addresses, Sockets, and
System Programming

COMP 411, Fall 2022
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University and some material

from Computer Networks by Tannenbaum and Wetherall.

2

1. Announcements
– homework 1 due today, homework 2 posted

• tictactoe.py solution code will be posted once homework1 submitted

2. Network applications

3. Network programming
– TCP sockets

4. Network tools
– Wireshark: looking at real traffic

vumanfredi@wesleyan.edu

Internet Organization

vumanfredi@wesleyan

4

IPv4 addresses
– 4 bytes

• space of addresses: 0-255 . 0-255 . 0-255 . 0-255
• hostnames are human-readable, IP addresses are machine-readable

– Loopback address: send traffic to yourself
• traffic sent here is “looped back” through network stack on machine on

which sending process is running
• 127 . * .* .*
• typically 127.0.0.1, also called localhost

– Private subnet addresses
• 10 .* .* .*
• 172.16-31 .* .*
• 192.168 .* .*

IPv6 addresses
– 16 bytes: we’re running out of 4 byte addresses …

Subnet: shared prefix
portion of addr

vumanfredi@wesleyan

5

Amazon
– 50.19.*.* → 256 x 256 = 65536

addresses
– 54.239.98.* → 256 addresses
– …

Google
– 64.233.160.0 to 64.233.191.255
– 66.102.0.0 to 66.102.15.255
– …

Facebook
– 57.240.0.0/17
– 157.240.10.0/24
– 157.240.1.0/24
– …

Wesleyan
– 129.133.21.*
– …

vumanfredi@wesleyan

6

Your ISP or institution has block of IP addresses
– you are assigned one of those IP addresses
– (possible you will get NAT’d address …)

Static IP address
– manual configuration: set in network settings

Dynamic IP address
– using Dynamic Host Configuration Protocol (DHCP) in network-layer
– client (you) broadcasts request for IP address
– DHCP server on network assigns you address from address pool

• typically get IP address for fixed period of time
• router can be configured to act as DHCP server

vumanfredi@wesleyan

7

Many hosts have multiple IP addresses

How?
– IP address associated with network interface not host
– network interface card (NIC): connects computer to network

A host may have 1 or more network interfaces
– my laptop has (at least) 2 NICs: 1 wireless and 1 wired (via USB)
– router needs at least two interfaces

• otherwise can’t connect multiple networks together
– Cisco core router: can have up to 10,000 interfaces!

• one interface per link: router has many IP addresses

VirtualBox Virtual Machine (VM)
– you can set the number and type of network interfaces for VM

vumanfredi@wesleyan

8

ifconfig
– what network interfaces does my machine have?
– what are my IP and MAC # addresses?
– configure/enable/disable an interface

Ethernet 0
IPv4 address
IPv6 address

Loopback
address

Linux

vumanfredi@wesleyan

9

Host

What’s host name for IP address?

vumanfredi@wesleyan

10

dig

DNS resolver used

11

Ping
– sends ICMP echo request to host
– host sends ICMP echo reply back
– If no reply within timeout period, packet deemed lost

vumanfredi@wesleyan

12

What happens if you run multiple network applications?
– many processes running on computer

• process is program in execution

How do messages received by computer get to right process?
– messages are addressed to (IP address, port #) pair
– different processes on computer will connect to network using same

IP address but different port numbers

vumanfredi@wesleyan

13

Routing algorithm

Local forwarding table
Dest IP Output link
129.133.*.*

43.*.*.*
43.56.*.*

189.37.35.*

3
2
2
1

1
23

\

129.133.7.68

Dest IP addr in header of arriving
packet (sequence of bits)

1. Routing
• view Internet as giant graph
• run shortest path algorithms

2. Forwarding
• use paths to choose best output link

for packet destination IP address
• if one link fails, chooses another

How does Internet router determine outgoing link for packet?

14

Each router uses its forwarding table to choose outbound link
based on packet’s destination

ISP C

ISP B

ISP A

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

…

…
……

…

…

access
net

access
netaccess

net

access
net

regional net

Your host
e.g., 129.133.176.1

www.google.com
aka 172.217.12.206

vumanfredi@wesleyan.edu

Network Applications

vumanfredi@wesleyan.edu

16

Write programs that
– run on (different) end systems
– communicate over network
– e.g., web server software

communicates with browser
software

Q: Do we need to write software
for network-core devices?

– No, network-core devices do not
run user applications

– applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

vumanfredi@wesleyan.edu

17

Server
– always-on, dedicated host

• e.g., web server
– permanent IP address
– data centers for scaling

Clients
– communicate with server
– may be intermittently connected
– may have dynamic IP addresses
– do not communicate directly with

other clients

Client host requests and receives service
from always on server host

Resp

Client and server devices
are not equivalent

vumanfredi@wesleyan.edu

Req

18

End systems directly communicate
– self scalability – new peers bring

new service capacity, as well as
new service demands

– minimal/no use of always-on server
– E.g., Skype, BitTorrent

Complex management
– peers are intermittently connected

and change IP addresses
– Q: why is this complex?

Peers request service from other peers, provide
service in return to other peers

Req Resp

All devices are equivalent: a
client can also be a server

vumanfredi@wesleyan.edu

19

Process
– program in execution, running

within a host

Processes within same host
– communicate by using inter-

process communication
(defined by OS)

Processes on different hosts
– communicate by exchanging

messages

Clients, servers
– client process

• process that initiates
communication

– server process
• process that waits to be

contacted

Aside
– applications with P2P

architectures also have
client & server processes

vumanfredi@wesleyan.edu

Our goal learn how to build client/server
applications that use sockets to communicate

Network Programming

vumanfredi@wesleyan.edu

21

Via sockets
– interface transport layer provides to apps to access network
– connection endpoint with associated IP addr, port #

vumanfredi@wesleyan

Client Process Server Process

Socket
TCP or UDP

Socket
TCP or UDP

Application layer

Transport layer

Network layer

Client Port # Server Port #

Client IP address Server IP address

Network

Well-known ports: 0-1023
– E.g., HTTP is port 80

Registered ports: 1023-49151
Available ports: 49152-65535

22

import socket
– gives access to BSD (Berkeley Socket Distribution) socket interface

• POSIX sockets <-> Berkeley sockets <-> BSD sockets
• available on pretty much every modern operating system

Resources
– https://docs.python.org/3/howto/sockets.html
– https://docs.python.org/3/library/socket.html

Socket exceptions
– https://docs.python.org/3/library/socket.html#exceptions

You must read/write bytes from/to a socket
– encode string to bytes: string.encode(‘utf-8’)
– decode string from bytes: string.decode(‘utf-8’)

https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html

23

Address families
– AF_UNIX

• local, inter-process communication
– AF_INET4

• Internet protocol v4
– AF_INET6

• Internet v6

Socket types
– SOCK_DGRAM

• UDP packets
– SOCK_STREAM

• TCP packets
– SOCK_RAW

• don’t let OS process transport
header on packet, have OS
send/receive raw packet

To send HTTP message to
wesleyan.edu web server

– IP address: 129.133.7.68
– port number: 80

Part of process identifier:
e.g., <ip address, port>

Different types of service
offered by different

socket types

24

TCP (Transmission Control Protocol)
– connection-oriented

• before data exchange takes place, a
logical connection is first established

– reliable, byte stream-oriented
• delivery is in-order, error- and loss-free,

no duplication

UDP (User Datagram Protocol)
– connection-less

• data is sent directly in a best-effort way

– unreliable
• data can arrive out-of-order, be lost, corrupted,

duplicated

vumanfredi@wesleyan.edu

App reads in-order,
error-free bytes from

socket

App reads whatever is
currently at socket, whether

out-of-order, missing etc.

Any reliability must be
implemented by app

25

socket.send(bytes) - TCP
– Send data to the socket. The socket must be connected to a remote

socket. Returns the number of bytes sent. Applications are responsible for
checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data

socket.sendall(bytes) - TCP
– Send data to the socket. The socket must be connected to a remote

socket. Unlike send(), this method continues to send data from bytes until
either all data has been sent or an error occurs. None is returned on
success. On error, an exception is raised, and there is no way to determine
how much data, if any, was successfully sent.

socket.sendto(bytes, address) - UDP
– Send data to the socket. The socket should not be connected to a remote

socket, since the destination socket is specified by address.

vumanfredi@wesleyan.edu

https://docs.python.org/3/library/socket.html

26

Socket.recv(num_bytes)
– Receive data from the socket. The return value is a bytes object

representing the data received. The maximum amount of data to be
received at once is specified by bufsize.

vumanfredi@wesleyan.edu

27

socket.sendall()
– generally preferable to use to eliminate partial send

socket.recv()
– app needs way to know whether it has read everything from socket

• “end” flag
• a priori knowledge of number of bytes to read
• …

– typically put recv() in while loop
• keep reading until nothing left to read from socket

vumanfredi@wesleyan.edu

28

Big endian
– big end first: largest byte (containing most significant bit) first

Little endian
– little end first: smallest byte (containing least significant bit) first

Network byte order
– big endian

UTF-8 byte order
– stays the same regardless of endian-ness of machine
– i.e., you shouldn’t need to worry about byte order

vumanfredi@wesleyan.edu

Network Programming

vumanfredi@wesleyan.edu

30

Client must first contact server
before sending data

– server process must be running
• creates socket (door) that

welcomes client’s contact

How?
– create TCP socket

• specify server IP addr, port #
– “handshake” occurs

• TCP Syn/Synack/Ack
exchanged

• if succeeds, connection
established, can send data

Application viewpoint
TCP provides reliable, in-order
byte-stream transfer (“pipe”)

between client and server

vumanfredi@wesleyan.edu

When contacted by client
– server TCP creates new

socket for server process to
communicate with that
particular client

• allows server to talk with
multiple clients

• source port numbers used
to distinguish clients

31vumanfredi@wesleyan.edu

Internet
transport

application

physical
link

network

process

IP1, Port1

IP2, Port2

x

Source 1

Source 2

IP1,Port1,
IP3,Port3

IP3, Port3IP2,Port2,
IP3,Port3

IP1,Port1,
IP3,Port3

Establish connection, read/write
bytestream, only packets with matching
4-tuple (src ip, src port, dst ip, dst port)

are pushed to application

32

Wait for incoming
connection request
connectionSocket =

serverSocket.accept()

Create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_STREAM)

create socket,
connect to serverIP, port=x

clientSocket = socket()

Send request using
clientSocketread request from

connectionSocket
write reply to

connectionSocket

TCP
connection setup

close
connectionSocket

Read reply from
clientSocket

Close clientSocket

Server running on serverIP Client running on clientIP

vumanfredi@wesleyan.edu

33

1. Client
– reads a line of characters (data) from its keyboard and sends data

to server via socket

2. Server
– receives data from socket and converts characters to uppercase

3. Server
– sends modified data to client

4. Client
– receives modified data and displays line on its screen

vumanfredi@wesleyan.edu

34

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new

socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming

socket)

vumanfredi@wesleyan.edu

35

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port

12000

No need to attach
server name, port

vumanfredi@wesleyan.edu

36

Look at code and run:
available on class schedule

vumanfredi@wesleyan.edu

Packet sniffing

vumanfredi@wesleyan

38

Packet sniffer
– passively observes messages transmitted and received on a

particular network interface by processes running on your computer
– often requires root privileges to run

Popular packet sniffers
– Wireshark (also command-line version, tshark)
– tcpdump (Unix) and WinDump (Windows)
– use command line sniffers to analyze packet traces with bash script

vumanfredi@wesleyan

39

Transport (TCP/UDP)
Network (IP)
Link (Ethernet)
Physical

application
(www browser,

email client)

application

OS

packet
capture
(pcap)

packet
analyzer

copy of all
Ethernet
frames

sent/received

vumanfredi@wesleyan

40

Install
– https://www.wireshark.org/download.html

Run
– type Wireshark in terminal, or double-click icon
– Wireshark display may look different for Linux vs. Mac vs. Windows

Choose an
interface to

capture
traffic on

https://www.wireshark.org/download.html

41

Display Filter
ProtocolsSource IP Dest IP Protocol State

Captured
packets

Packet
details

Packet contents in hex
and ascii: can match

bytes to header

2 hex digits = 1 byte= 1 ascii char

If you click on pkt or header field,
will highlight hex/ascii fields and

vice versa vumanfredi@wesleyan

42

Layers
Physical
Link
Network
Transport
Application

vumanfredi@wesleyan

43

Only TCP
traffic See only TCP

TLS protocol runs
over TCP

vumanfredi@wesleyan

