Lecture 12: Transport Layer
TCP again

COMP 411, Fall 2022
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.



TCP
OVERVIEW



Transmission Control Protocol (TCP) .4, 55ia2s

2018, 2581

Main transport protocol used in Internet, provides

mux/dmux: which packets go where

connection-oriented, point-to-point
» 2 hosts set up connection before exchanging data, tear down after
* bidirectional data flow (full duplex)

flow control: don’t overwhelm receiver

congestion control: don’t overwhelm network

reliable: resends lost packets, checks for and corrects errors
in-order: buffers data until sequential chunk to pass up

byte stream: no msg boundaries, data treated as stream

Sender Receiver

Send Receive
data data




How does TCP provide these services?

Using many techniques we already talked about

Sliding window
— congestion and flow control determine window size
— seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
— only one retransmission timer
* intuitively, associate with oldest unACKed packet

— timeout period
» estimated from observations

— fast retransmit
» 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!



TCP segment structure

32 bits

A

v

URG: urgent data
0 source port #

(generally not used)\ | dest port #
ACK: ACK # . sequence number

valid \o@owledgement number

head
PSH: push data now on |us usgd E—IEJ,RSF receive window

(generally not used) — Urg data pointer

RST, SYN, FIN:_— opﬂ( variable length)

connection estab

(setup, teardown
commands) S
application

Internet/ data
(variable length)

checksum
(as in UDP)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Q: Why both seq #

and ack #? Could be
both sending data and
acking received data



\

No. Time Source Destination
i 42 4.878920 172.217.11.10 vmanfredismbp2.wireless.wesleyan.edu
44 4.879137 outlook-namnortheast2.offi.. vmanfredismbp2.wireless.wesleyan.edu
46 4.879346 vmanfredismbp2.wireless.we.. outlook—-namnortheast2.office365.com

‘ A=y A NN~ e A M A AN AT EikeR SR B L e A

» Internet Protocol Version 4, Src: outlook-namnortheast2.office365.com (40.97.120.226), Dst: \
v Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52232 (52232), Seq: 0, Ack: 1,
Source Port: 443
Destination Port: 52232
[Stream index: 0]
[TCP Segment Len: 0]
Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes
© Flags: 0x012 (SYN, ACK)

000. .... .... = Reserved: Not set
«2a® .... .... = Nonce: Not set
. 0... .... = Congestion Window Reduced (CWR): Not set
ssss a0.. .uu. = ECN-Echo: Not set
sses 2:@. .... = Urgent: Not set
.1 .... = Acknowledgment: Set

« 0... = Push: Not set
.0.. = Reset: Not set
> e Syn: Set
rsss sass 220 = Fin: Not set
[TCP Flags: sekkkkkkAxkSxk]
Window size value: 8190
[Calculated window size: 8190]
» Checksum: @xcb80 [validation disabled]
Urgent pointer: 0

» Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation
. [RFN/ACK analucicl

78 4f 43 73 43 26 3c 8a b0 le 18 01 08 00 45 20 XOCsC&<. vvsnus E

0010 00 34 32 41 40 00 eb 06 7e eb 28 61 78 e2 81 85 A ZB@ ua 5 DN o

| 0020 bb ae @1 bb cc 88 a9 a2 4d d9 59 5a 86 d8 80 12 ........ M.YZ....
| 0030 1f fe cb 80 00 00 02 04 05 50 01 03 03 04 01 01 .....uus P

04 02



TCP
SEQ #S AND ACK #S



TCP seq. numbers, ACKs

Sequence #s

— byte stream # of first byte
iIn segment’s data

Acknowledgements

— seq # of next byte
expected from other side

— cumulative ACK

Q: how does receiver handle
out-of-order segments?

— TCP spec doesn’t say

— up to implementer

Outgoing segment
from sender

source port # | dest port #

sequence number g

acknowledgement number
| | rwnd

checksum

urg pointer

wmdow size

sender SE'C]UE’/?CE num er space

A
sent sent not- usable not
ACKed yet ACKed butnot usable

(“in-flight”) yet sent

Incoming segment to sender
dest port #
sequence number

lll acknowledgement number
rwnd

checksum

source port #

urg pointer




TCP ACKs

Cumulative ACKs (but different than in Go-Back-N)

— ACKs what receiver expects next, not last packet received
 implicitly also ACKs everything up to sequence number received

— only 1 retransmission timer (for first pkt in window)
» sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

. send_base
Initial Sequence  _ gy 4+ | Next_seq_num

Number (ISN)

k bytes - wmdow Size
Sent + Sent + not- usable not

ACKed yet ACKed but not ~usable
(“in-flight”) yet sent



TCP seq. numbers, ACKs

Sequence numbers are synchronized during connection set-up

Host A Host B
Lastseq# |/ !V : Last seq #
sent: 41 =& . sent: 78
User types ‘C’ —

Seq=42, ACK=79, data = ‘C’
d\:b Host ACKs receipt of ‘C’,
echoes back ‘C’
— ('C'is 1 byte long)
Host ACK - Seq=79, ACK=43, data = ‘C’
0s S recelp
of echoed ‘C’ A/
\
Seq=43, ACK=K

Simple nc scenario



Host 1 Host 2

- Transmission Control Protocol,
Source Port: 54573

Destination Port: 443 Transmission Control Protocol, Src

[Stream index: 2 Source Port: 443 .
Handshake: [TCP Segmen \ Destination Port: 54573 C;Jr?(;/?:rl]:\llotr;kiY’lN
Synchronize Sequence number:<.59452065 [Stream index: 2]

ISNs  Acknowledgment number [TCP Segmeng byte of seq #
3712814908 > °SPace

Header Length: Sequence number
» Flags: 0x002 (SYN Acknowledgment number
Window size value: 65535 Header Length: 4@ bytes
» Flags: 0x@12 (SYN, ACK)
Window size value: 14480

Ul bt el bl L L Transmission Control Protocol, Src Pc
Source Port: 54573

g S T Source Port: 443
estina }0" ort: \ Destination Port: 54573
[Stream index: 2]

[Stream index:
Data  [TCP Segmen [TCP Segment

exchange Sequence number:( 59452066 Sequence number:
[Next sequence number: 59452278]

Acknowledgment number:(59452278
Acknowledgment number: (3712814909 Header Length @
S e

wind : lue: 4122 Window size value: 122
e [Calculated window size: 15616]

What are seq and ack #s in next [Window size scaling factor: 128]
segment from receiver?

12



Segment size

Max length of IP packet in bytes
— MTU: Maximum Transmission Unit
— 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes

— MSS: Maximum Segment Size

— MSS = MTU = IP hdr— TCP hdr
» TCP header >= 20bytes

|P data

TCP segment sent when

IPhdr  TCP hdr TCP data either it is full (meets
MSS) or not full but

timeout occurs

|
IP pkt

13



TCP
TIMEOUTS



TCP timeout

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
— but RTT varies ....

Too short

— premature timeout
— unnecessary retransmissions

Too long
— slow reaction to segment loss



How to estimate RTT

SampleRTT

— time from segment transmission to ACK reception

— ignore retransmissions
* since problems associating retransmitted ACK with right pkt
 will vary: use average of several measurements

— exponential weighted moving average of sampleRTTs
— influence of past sample decreases exponentially fast
— typical value: o = 0.125

= (1-a)* + a*SampleRTT



Variation in RTT

350
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

—

V) .

O 300

=

8 \

8 . 1 T I fl M

£

~ 200

n: ¢ sampleRTT
EstimatedRTT

100

1 8 1‘5 2‘2 2‘9 :‘56 4‘13 5;(1 57 £34 ‘71 7‘8 6;5 E;Z 59 1‘06
time
(seconds)

Q: How to handle variation in RTT?

— timeout interval should be 2
* because of variation of RTT values
* large variation in = larger safety margin



Handling variation in RTT

Estimate SampleRTT deviation from EstimatedRTT

DevRTT = (1-B)*DevRTT + B*|SampleRTT-Estimated R T T]
(typically, B = 0.25)

Timeoutinterval = EstimatedRTT + 4*DeV|TTT

“safety margin”
If timeout occurs: timeout interval doubled to prevent
premature timeout for subsequent segments




TCP
RELIABLE DATA TRANSFER



TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service
— pipelined segments
— cumulative acks
— single retransmission timer

Retransmissions triggered by

— timeout events
— duplicate ACKs

Let’s initially consider simplified TCP sender
— ignore duplicate acks
— ignore flow control, congestion control



TCP sender (simplified)

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

a . start timer
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y R_etransmlt first segment .
window, restart timer
if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

: If acks previously unacked segments,
}else stop timer update what is known to be ACKed,

start timer if still unacked segments



TCP: retransmission scenarios

Host A H B

0S
w \uli
e ——
Start timer for
oldest

unacked
segment

-

\
Seq=92, 8 bytes of data

5
o
Q
E
\

Seq=92, 8 bytes of data

/

ACK=100

/

lost ACK scenario

—

-
ACK=100
ol

Host A Hos
- \u
03%
Ao

SendBase=92

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

——timeout ——

Seq=92, 8

SendBase=100 bytes of data\‘

SendBase=120

\

ACK=120

\

SendBase=120

premature timeout

o



TCP: retransmission scenarios

Host A Host B
w \ull
> g

\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X«

ACK=120

\h

e——— timeout

Seq=120, 15 bytes of data

\.L

cumulative ACK



