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TCP
OVERVIEW



Transmission Control Protocol (TCP) .4, 55ia2s

2018, 2581

Main transport protocol used in Internet, provides

mux/dmux: which packets go where

connection-oriented, point-to-point
» 2 hosts set up connection before exchanging data, tear down after
* bidirectional data flow (full duplex)

flow control: don’t overwhelm receiver

congestion control: don’t overwhelm network

reliable: resends lost packets, checks for and corrects errors
in-order: buffers data until sequential chunk to pass up

byte stream: no msg boundaries, data treated as stream

Sender Receiver

Send Receive
data data




How does TCP provide these services?

Using many techniques we already talked about

Sliding window
— congestion and flow control determine window size
— seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
— only one retransmission timer
* intuitively, associate with oldest unACKed packet

— timeout period
» estimated from observations

— fast retransmit
» 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!



TCP segment structure
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0 source port #
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ACK: ACK # . sequence number

valid \o@owledgement number

head
PSH: push data now on |us usgd E—IEJ,RSF receive window

(generally not used) — Urg data pointer

RST, SYN, FIN:_— opﬂ( variable length)

connection estab

(setup, teardown
commands) S
application

Internet/ data
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checksum
(as in UDP)

counting

by bytes

of data
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# bytes
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Q: Why both seq #

and ack #? Could be
both sending data and
acking received data
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No. Time Source Destination
i 42 4.878920 172.217.11.10 vmanfredismbp2.wireless.wesleyan.edu
44 4.879137 outlook-namnortheast2.offi.. vmanfredismbp2.wireless.wesleyan.edu
46 4.879346 vmanfredismbp2.wireless.we.. outlook—-namnortheast2.office365.com
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» Internet Protocol Version 4, Src: outlook-namnortheast2.office365.com (40.97.120.226), Dst: \
v Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52232 (52232), Seq: 0, Ack: 1,
Source Port: 443
Destination Port: 52232
[Stream index: 0]
[TCP Segment Len: 0]
Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes
© Flags: 0x012 (SYN, ACK)

000. .... .... = Reserved: Not set
«2a® .... .... = Nonce: Not set
. 0... .... = Congestion Window Reduced (CWR): Not set
ssss a0.. .uu. = ECN-Echo: Not set
sses 2:@. .... = Urgent: Not set
.1 .... = Acknowledgment: Set

« 0... = Push: Not set
.0.. = Reset: Not set
> e Syn: Set
rsss sass 220 = Fin: Not set
[TCP Flags: sekkkkkkAxkSxk]
Window size value: 8190
[Calculated window size: 8190]
» Checksum: @xcb80 [validation disabled]
Urgent pointer: 0

» Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation
. [RFN/ACK analucicl

78 4f 43 73 43 26 3c 8a b0 le 18 01 08 00 45 20 XOCsC&<. vvsnus E

0010 00 34 32 41 40 00 eb 06 7e eb 28 61 78 e2 81 85 A ZB@ ua 5 DN o

| 0020 bb ae @1 bb cc 88 a9 a2 4d d9 59 5a 86 d8 80 12 ........ M.YZ....
| 0030 1f fe cb 80 00 00 02 04 05 50 01 03 03 04 01 01 .....uus P

04 02



TCP
SEQ #S AND ACK #S



TCP seq. numbers, ACKs

Sequence #s

— byte stream # of first byte
iIn segment’s data

Acknowledgements

— seq # of next byte
expected from other side

— cumulative ACK

Q: how does receiver handle
out-of-order segments?

— TCP spec doesn’t say

— up to implementer

Outgoing segment
from sender

source port # | dest port #

sequence number g

acknowledgement number
| | rwnd

checksum

urg pointer

wmdow size

sender SE'C]UE’/?CE num er space

A
sent sent not- usable not
ACKed yet ACKed butnot usable

(“in-flight”) yet sent

Incoming segment to sender
dest port #
sequence number

lll acknowledgement number
rwnd

checksum

source port #

urg pointer




TCP ACKs

Cumulative ACKs (but different than in Go-Back-N)

— ACKs what receiver expects next, not last packet received
 implicitly also ACKs everything up to sequence number received

— only 1 retransmission timer (for first pkt in window)
» sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

. send_base
Initial Sequence  _ gy 4+ | Next_seq_num

Number (ISN)

k bytes - wmdow Size
Sent + Sent + not- usable not

ACKed yet ACKed but not ~usable
(“in-flight”) yet sent



TCP seq. numbers, ACKs

Sequence numbers are synchronized during connection set-up

Host A Host B
Lastseq# |/ !V : Last seq #
sent: 41 =& . sent: 78
User types ‘C’ —

Seq=42, ACK=79, data = ‘C’
d\:b Host ACKs receipt of ‘C’,
echoes back ‘C’
— ('C'is 1 byte long)
Host ACK - Seq=79, ACK=43, data = ‘C’
0s S recelp
of echoed ‘C’ A/
\
Seq=43, ACK=K

Simple nc scenario



Host 1 Host 2

- Transmission Control Protocol,
Source Port: 54573

Destination Port: 443 Transmission Control Protocol, Src

[Stream index: 2 Source Port: 443 .
Handshake: [TCP Segmen \ Destination Port: 54573 C;Jr?(;/?:rl]:\llotr;kiY’lN
Synchronize Sequence number:<.59452065 [Stream index: 2]

ISNs  Acknowledgment number [TCP Segmeng byte of seq #
3712814908 > °SPace

Header Length: Sequence number
» Flags: 0x002 (SYN Acknowledgment number
Window size value: 65535 Header Length: 4@ bytes
» Flags: 0x@12 (SYN, ACK)
Window size value: 14480

Ul bt el bl L L Transmission Control Protocol, Src Pc
Source Port: 54573

g S T Source Port: 443
estina }0" ort: \ Destination Port: 54573
[Stream index: 2]

[Stream index:
Data  [TCP Segmen [TCP Segment

exchange Sequence number:( 59452066 Sequence number:
[Next sequence number: 59452278]

Acknowledgment number:(59452278
Acknowledgment number: (3712814909 Header Length @
S e

wind : lue: 4122 Window size value: 122
e [Calculated window size: 15616]

What are seq and ack #s in next [Window size scaling factor: 128]
segment from receiver?
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Segment size

Max length of IP packet in bytes
— MTU: Maximum Transmission Unit
— 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes

— MSS: Maximum Segment Size

— MSS = MTU = IP hdr— TCP hdr
» TCP header >= 20bytes

|P data

TCP segment sent when

IPhdr  TCP hdr TCP data either it is full (meets
MSS) or not full but

timeout occurs

|
IP pkt
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TCP
TIMEOUTS



TCP timeout

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
— but RTT varies ....

Too short

— premature timeout
— unnecessary retransmissions

Too long
— slow reaction to segment loss



How to estimate RTT

SampleRTT

— time from segment transmission to ACK reception

— ignore retransmissions
* since problems associating retransmitted ACK with right pkt
 will vary: use average of several measurements

— exponential weighted moving average of sampleRTTs
— influence of past sample decreases exponentially fast
— typical value: o = 0.125

= (1-a)* + a*SampleRTT



Variation in RTT

350
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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Q: How to handle variation in RTT?

— timeout interval should be 2
* because of variation of RTT values
* large variation in = larger safety margin



Handling variation in RTT

Estimate SampleRTT deviation from EstimatedRTT

DevRTT = (1-B)*DevRTT + B*|SampleRTT-Estimated R T T]
(typically, B = 0.25)

Timeoutinterval = EstimatedRTT + 4*DeV|TTT

“safety margin”
If timeout occurs: timeout interval doubled to prevent
premature timeout for subsequent segments




TCP
RELIABLE DATA TRANSFER



TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service
— pipelined segments
— cumulative acks
— single retransmission timer

Retransmissions triggered by

— timeout events
— duplicate ACKs

Let’s initially consider simplified TCP sender
— ignore duplicate acks
— ignore flow control, congestion control



TCP sender (simplified)

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

a . start timer
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y R_etransmlt first segment .
window, restart timer
if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

: If acks previously unacked segments,
}else stop timer update what is known to be ACKed,

start timer if still unacked segments



TCP: retransmission scenarios

Host A H B

0S
w \uli
e ——
Start timer for
oldest

unacked
segment

-

\
Seq=92, 8 bytes of data

5
o
Q
E
\

Seq=92, 8 bytes of data

/

ACK=100

/

lost ACK scenario

—

-
ACK=100
ol

Host A Hos
- \u
03%
Ao

SendBase=92

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

——timeout ——

Seq=92, 8

SendBase=100 bytes of data\‘

SendBase=120

\

ACK=120

\

SendBase=120

premature timeout

o



TCP: retransmission scenarios

Host A Host B
w \ull
> g

\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X«

ACK=120

\h

e——— timeout

Seq=120, 15 bytes of data

\.L

cumulative ACK



