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Today’s Topics

Homework 4 out
— Due Thursday, October 7 by 11:59p

Linear models
=  Overview
= Geometry of linear classifiers
= A notational simplification
= Learning linear classifiers

= Expressivity



Linear models
OVERVIEW



Checkpoint: the bigger picture

Supervised learning: instances, concepts, and hypotheses
= Labeled data — Learning algorithm— Hypothesis/Model &

=  New example — h —Prediction

Specific learners

= Decision trees

General ML ideas
= Features as high dimensional vectors
=  Overfitting



Is learning possible at all?

There are 2'° = 65536 possible
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Boolean functions over 4 inputs

=  Why? There are 16 possible outputs.
each way to fill these 16 slots is a

different function, giving 2'°
functions

We have seen 7 outputs

We cannot know what the rest are
without seeing them
= Think of an adversary filing in the

labels every time you make a guess
at a function
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Is learning possible at all?

There are 2'° = 65536 possible

. . X1 X2 X3 X4 y
Boolean functions over 4 inputs 0 0 0 0 >
«  Why? There are 16 possible outputs. 0 0 0 1 ?
each way to fill these 16 slots is a L o L 9 4

d

fu . .
How could we possibly learn anything?

We havi
1 0 0 O ?
We cannot know what the rest are 1 0 0 1 1
without seeing them 1 0 1 0 ?
: S 1 1 1 ?
= Think of an adversary filing in the 7 (1) F— .
labels every time you make a guess 1 1 0 1 5
at a function 1 1 1 0 ?
1 1 1 1 ?



Solution: restrict the search space

A hypothesis space is the set of possible functions we consider

We were looking at the space of all Boolean functions. Instead we choose
a hypothesis space that is smaller than the space of all functions

For example:

e Only simple conjunctions with 4 variables, there are 16 conjunctions
without negations

e Simple disjunction
e m-of-n rules: Fix a set of n variables. At least m of them must be true

e Linear functions



Training set for classification
Buys computer? No @ Yes @
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Q: How should we draw
decision boundary
separating No and Yes?
|.e., which is the better



Classifier attempt 1

Age

Buys computer? No @ Yes @
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Function

e if person’sincome <x,
then person will not
buy a computer.

e if person’sincome > x
then person will buy a
computer

Problem
« Weignored age ...

Question
e (Can we do better?



Classifier attempt 2

Buys computer? No @ Yes @

Yes: improve performance
at the cost of paying
@ | oattention to age

Q: Can we do even better?




Classifier attempt 3

Buys computer?

No @ Yes @

Yes: almost everything
correct at cost of more
complex classifier

So far:

1. y=b>

2. y=mx+b

3. y=ax’+bx+c

Q: Can we do even better?



Classifier attempt 4

Buys computer? No @ Yes @

Uh-oh: this doesn’t seem

right! Risks overfitting

Errant pink point

* Data mis-recorded?

* Person got emergency
call and left shop?

* Other noise ...




The winner!

Buys computer?

No @ Yes @

Why? Trades-off
complexity vs. accuracy

Other considerations: is
there noise in the data? If
so, how do we handle the
noise



Linear classification vs. regression

Linear classification is about predicting a discrete class label
= +1lor-1
= SPAM or NOT-SPAM
= Or more than two categories

Linear regression is about predicting real valued outputs



Training set for regression

Input: time of day

Output: temperature at time _
Output is no longer a

discrete value: now

A Temperature continuous
X
X x X X
Time of day X X X
Day | Night




Fit attempt 1

Input: time of day

Output: temperature at time Function

e if person’sincome <,
then person will not
buy a computer.

e if person’sincome > x

A Temperature

X then person will buy a
— X y X X computer
o—o—0—©
Time of day X x X Problem

« Weignored age ...

Question
Day | Night ¢ Can we do better?




Fit attempt 2

Input: time of day

Output: temperature at time Function

e if person’sincome <,
then person will not
buy a computer.

e if person’sincome > x

A Temperature

X then person will buy a
XK Y% — computer
o—o—0—9©
Time of day Problem

« Weignored age ...

Question
Day | Night ¢ Can we do better?




Fit attempt 3

Input: time of day

Output: temperature at time Function

e if person’sincome <,
then person will not
buy a computer.

e if person’sincome > x
then person will buy a

computer
z Problem

e Overfitting

A Temperature

*—o—o—9
Time of day

Day | Night



Linear Classifiers
OVERVIEW



Linear classifiers: an example

Suppose we want to determine whether a robot arm is defective or not using
two measurements:

1. The maximum distance the arm can reach d

2. The maximum angle it can rotate a

Suppose we use a linear decision rule that predicts defective if
2d + 0.01a > 7

We can apply this rule if we have the two measurements

For example: for a certain arm, if d = 3 and a = 200 then
2d+0.0la=82>7

The arm would b labeled as not defective



Linear classifiers: an example

Suppose we want to determine whether a robot arm is defective or not using
two measurements:

1. The maximum distance the arm can reach d

2. The maximum angle it can rotate a

Suppose we use a linear decision rule that predicts defective if
2d + 0.01a > 7

This rule is an example of a linear classifier

Features are weighted and added up, the sum is checked
against a threshold



Linear classifiers

Inputs are d dimensional vectors, denoted by X

Outputis alabely € {—1,1}

Linear Threshold Units classify an example X using parameters w (a d
dimensional vector) and b (a real number) according to the following
classification rule

Output = sign(w! x + b) = sign( Z wx; + D)
i

ifwix+b>0=2>y=+1
ifwix+b<0=2>y=-1

b is called the bias term



Standard form of a line

Ax+By=C

A, B, and C are real numbers

A and B are not both zero



Drawing line
wW-X+b

2-dimensions: wix; + wox, + b =0

. —(b—wxy) —b
Solve for x -intercept: x; = ify =0thenx;, = —
Wi Wi

. —(b—wxy) —b

Solve for x,-intercept: x, = ify =0thenx, = —
W W

Two points: (0, — b/wy), (=b/w,0)

—blw, —b
, lntercept Xy = ——
b/Wl Wh

Slope =



Dot product

T

The dot product of two vectors is written as m” X or m - X, which

k
is defined as: m’x = 2 n;X;
i=1

Example
m = < 5.13,1.08, — 0.03,7.29 >
X = < Xy, X9, X3, X4 >
m’x = 5.13x; + 1.08x, — 0.03x; + 7.29x,

If dot product of two vectors is zero: means the two vectors are
perpendicular (90° angle)



Length or norm of a vector

The length or norm of a vector v is the square root of length = | |v|| =y/V -V

Dot product here is not zero (Vv is not perpendicular to itself), so now have 0’
angle: dot product of v - v gives length of v squared

In 2 dimensions: length = || V]| = \/Vlz + V22

In 3 dimensions: length = || V|| = \/Vlz + V22 + Ve2

See Introduction to Linear Algebra by Gilbert Strang



The geometry of a linear classifier

An illustration in two dimensions

+ o+
+ o+




The geometry of a linear classifier

An illustration in two dimensions
sgn(b + wix; + wyx,)

+ o+
+ o+




The geometry of a linear classifier

sgn(b + wix; + wyx,)

b + Wl.xl + W2X2 — O

An illustration in two dimensions
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The geometry of a linear classifier

sgn(b + wix; + wyx,)

b+ wix; + wrx,

=0
/

An illustration in two dimensions
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The geometry of a linear classifier

An illustration in two dimensions

sgn(b + wix; + wyx,)

b+ wix; + wrx,

=0
/

[wy, wy]

+ '+
+ T

X1

b is



The geometry of a linear classifier

sgn(b + wix; + wyx,)

b+ wix; + wrx,

=0
/

[wy, wy]

/

We only care about the sign,
not the magnitude

N
+H+1
4+

X1

N\

In higher dimensions, a
linear classifier represents
a hyperplane that separates
the space into two half-
spaces



Simplifying notation

We can stop writing b at each step using notational sugar:

The prediction function is sgn(w’ x + b) = sgn( 2 w.x; + b)
i

, X . . w .y
Rewrite x as [1] Call this x'. Rewrite w as [ ] Call this w

b

/ Increases dimensionality by one
Note that w’ x + b is the same as w ' x’ y by

Equivalent to adding a feature
The prediction function is now sgn(w ' x') that is constant: always 1

In the increased dimensional space, the vector w’ goes through the origin

We sometimes hide the bias /, and instead fold the bias term into the weights by
adding an extra constant feature. But remember that it is there.



Coming up: linear classification

Perceptron: error driven learning, updates the hypothesis if there is
an error

Logistic regression: another probabilistic classifier

Naive Bayes classifier: a simple linear classifier with a probabilistic
interpretation

In all cases, the prediction will be done with the same rule:

wix+b>0=>y=+1
wix+b<0=>y=-1



Linear Classifiers
EXPRESSIVENESS



Where are we?

Linear models: introduction

What functions do linear classifiers express?
= Conjunctions and disjunctions
= m-of-n functions
= Not all functions are linearly separable
= Feature space transformations

= EXxercises



Which Boolean functions can linear classifiers represent?

Linear classifiers are an expressive hypothesis class

Many Boolean functions are linearly separable
— Not all though

— Recall: In comparison, decision trees can represent
any Boolean function



Conjunctions and disjunctions

Vv =X, A X, A\ x5 is equivalent to “y = 1 whenever x; + x, + x; > 3”

X1 X2 X3 Y X1+ X2+ X3=3 sign
O 0 0O O -3 0
O 01 O -2 0
01 0 O -2 0
O1 1 O -1 0
10 0 O -2 0
1 01 O -1 0
11 0 O -1 0
11 1 1 0 1

Negations are okay too. In
general, use 1 — x in the linear
threshold unit if x is negated

VY = Xx; A X, A 7x5 corresponds
to



m-of-n functions

m-of-n rules
e There is a fixed set of n variables

e v = true if and only if at least m of them are true

e All other variables are ignored

Suppose there are five Boolean variables: x;, x,, X3, X4, X5

What is a threshold unit that is equivalent to the classification rule “at least 2 of
X1, X5, X3 177

X1+X2+X3 22



Parity is not linearly separable

(The XOR function)

Can’t draw a line to
separate the two classes
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Not all functions are linearly separable

XOR is not linear
ey =XxXORYy
cy=xAY)V(XxAY)
e Parity cannot be represented as a linear classifiers

e f(x) = 1 if the number of 1s is even

Many non-trivial Boolean functions
e Example:y = (x; A X,) V (X3 A 7xy)

e The function is not linear in the four variables



Even these functions can be made linear

These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

'J ——@

The trick: change the representation



The blown up feature space

The trick: use feature conjunctions

Transform points: represent each point x in 2 dimensions by (x, xz)

2

Now the data is linearly separable in this space! 43



The blown up feature space

The trick: use feature conjunctions

Transform points: represent each point x in 2 dimensions by (x, xz)

.X2

Key issue: representation. What features to use? ”



Exercise

How would you use the feature transformation idea to make XOR in two
dimensions in two dimensions linearly separable in a new space?

To answer this question, you need to think about a function that maps examples
from two dimensional space to a higher dimensional space.



Almost linearly separable data

sgn(b + wix; + wyx,) Training data is almost separable,
except for some noise

b+ wix; +wyx, =0 How much noise do we allow for?




Linear classifiers: an expressive hypothesis class

Many functions are linear
Often a good guess for a hypothesis space
Some functions are not linear

e The XOR function

e Non-trivial Boolean functions

But there are ways of making them linear in a higher dimensional
feature space



Why is the bias term needed?

wix; +wox, =0

If b is zero, then we are restricting
the learner only to hyperplane that
go through the origin

May not be expressive enough




