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Today’s	Topics

Evaluation

• Cross-validation

• Bias-variance	tradeoff



CROSS-VALIDATION
Evaluation



Model	selection
Very	broadly:	choosing	the	best	model	using	given	data


What	makes	a	model:

1. Features

2. Hyper-parameters	that	control	the	hypothesis	space


• Example:	depth	of	a	decision	tree,	neural	network	architecture,	etc.


3. The	learning	algorithm,	which	may	have	its	own	hyperparameters

4. Actual	model	itself


The	learning	algorithms	we	see	in	this	class	only	find	the	last	one

– What	about	the	rest?
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Model	selection	strategies

Choose	model	that	performs	best	on	a	hold-out	test	dataset


Cross-validation

– estimate	model	performance	using	resampling	technique


VC	dimension	and	risk	minimization


Probabilistic	statistical	measures

– Akaike	Information	Criterion	(AIC)

– Bayesian	Information	Criterion	(BIC)

– Minimum	Description	Length	(MDL)
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Cross-validation

We	want	to	train	a	classifier	using	a	given	dataset


We	know	how	to	train	given	features	and	hyper-
parameters


How	do	we	know	what	the	best	feature	set	and	hyper-
parameters	are?
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K-fold	cross-validation

1. Split	the	data	into	K	(say	5	or	10)	equal	sized	parts
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Given	a	particular	feature	set	and	hyper-parameter	setting

Part	1							Part	2							Part	3							Part	4							Part	5							



K-fold	cross-validation

1. Split	the	data	into	K	(say	5	or	10)	equal	sized	parts


2. Train	a	classifier	on	four	parts	and	evaluate	it	on	the	fifth	one
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Given	a	particular	feature	set	and	hyper-parameter	setting

Part	1							Part	2							Part	3							Part	4							Part	5							

train																																				evaluate

Part	5 Accuracy5



K-fold	cross-validation

1. Split	the	data	into	K	(say	5	or	10)	equal	sized	parts


2. Train	a	classifier	on	four	parts	and	evaluate	it	on	the	fifth	one


3. 	Repeat	this	using	each	of	the	K	parts	as	the	validation	set
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Given	a	particular	feature	set	and	hyper-parameter	setting

Part	1							Part	2							Part	3							Part	4							Part	5							Part	5 Accuracy5
Part	1							Part	2							Part	3							Part	4							Part	5							 Accuracy4
Part	1							Part	2							Part	3							Part	4							Part	5							 Accuracy3
Part	1							Part	2							Part	3							Part	4							Part	5							 Accuracy2
Part	1							Part	2							Part	3							Part	4							Part	5							 Accuracy1

Part	4
Part	3

Part	2
Part	1



K-fold	cross-validation

1. Split	the	data	into	K	(say	5	or	10)	equal	sized	parts


2. Train	a	classifier	on	four	parts	and	evaluate	it	on	the	fifth	one


3. 	Repeat	this	using	each	of	the	K	parts	as	the	validation	set


4. 	The	quality	of	this	feature	set/hyper-parameter	is	the	average	of	
these	K	estimates
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Given	a	particular	feature	set	and	hyper-parameter	setting

Performance	=	(Accuracy1	+	Accuracy2	+	Accuracy3	+	Accuracy4	+	Accuracy5	)	/	5



K-fold	cross-validation

1. Split	the	data	into	K	(say	5	or	10)	equal	sized	parts


2. Train	a	classifier	on	four	parts	and	evaluate	it	on	the	fifth	one


3. 	Repeat	this	using	each	of	the	K	parts	as	the	validation	set


4. 	The	quality	of	this	feature	set/hyper-parameter	is	the	average	of	
these	K	estimates


5. Repeat	for	every	feature	set/	hyper-parameter	choice
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Given	a	particular	feature	set	and	hyper-parameter	setting

Performance	=	(Accuracy1	+	Accuracy2	+	Accuracy3	+	Accuracy4	+	Accuracy5	)	/	5



Cross-validation
We	want	to	train	a	classifier	using	a	given	dataset

We	know	how	to	train	given	features	and	hyper-parameters


How	do	we	know	what	the	best	feature	set	and	hyper-parameters	
are?

1. 	Evaluate	every	feature	set	and	hyper-parameter	using	cross-

validation	(could	be	computationally	expensive)


2. 	Pick	the	best	according	to	cross-validation	performance


3. Train	on	full	data	using	this	setting
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BIAS	AND	VARIANCE	INFORMALLY
Evaluation



Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	
space.	


E.g.,	“my	hypothesis	space	is

• linear”

• decision	trees	with	5	nodes”

• a	three	layer	neural	network	with	rectifier	hidden	units”
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Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	
space.	


E.g.,	“my	hypothesis	space	is

• linear”

• decision	trees	with	5	nodes”

• a	three	layer	neural	network	with	rectifier	hidden	units”


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

• What	will	the	bias	be	if	the	hypothesis	set	cannot	represent	the	target	
function?	(high	or	low?):		bias	will	be	non-zero,	possibly	high


• Underfitting:	when	bias	is	high
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Variance
The	performance	of	a	classifier	is	dependent	on	the	specific	training	
set	we	have.	Perhaps	the	model	will	change	if	we	slightly	change	the	
training	set


Variance:		describes	how	much	the	best	classifier	depends	on	the	
training	set


Overfitting:		high	variance


Variance:

• Increases	when	the	classifiers	become	more	complex

• Decreases	with	larger	training	sets
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Let’s	play	darts
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High	bias

Low	bias

Low	variance High	variance

Suppose	the	true	concept	is	the	center

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset



Bias	variance	tradeoffs
Error	=	bias	+	variance	(+	noise)


High	bias	 	both	training	and	test	error	can	be	high

• Arises	when	the	classifier	cannot	represent	the	data


High	variance	 	training	error	can	be	low,	but	test	error	will	be	high

• Arises	when	the	learner	overfits	the	training	set


→

→
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BIAS	AND	VARIANCE	FORMALLY
Evaluation
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Questions

1. Given	a	hypothesis	 	and	a	data	sample	containing	 	
examples	drawn	at	random	according	to	the	
distribution	 ,	what	is	the	best	estimate	of	the	
accuracy	of	 	over	future	instances	drawn	from	the	
same	distribution?

‣ A	robust	model	would	give	us	the	same	prediction	
whatever	data	we	used	for	training	our	model


2. What	is	the	probable	error	in	this	accuracy	estimate?


h n

D
h
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Some	definitions	
Expected	value	or	mean	of	a	random	variable	 :			





Variance	of	a	random	variable	 	characterizes	the	width	or	dispersion	of	
the	distribution	around	its	mean:			


					 


	


													

Standard	deviation	of	 :





Y
μy ≡ E[Y ] = ∑

i

yi Pr(Y = yi)

Y

E[(Y − μy)2] = ∑
i

(yi − μy)2 Pr(Y = yi)

Var(Y ) = E[(Y − μy)2] = E[Y2] − E[Y ]2 = E[Y2] − μ2
y

Y
σY ≡ Var(Y )
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Some	definitions	

An	estimator	is	a	random	variable	 	used	to	estimate	
some	parameter	 	of	an	underlying	population.	


The	estimation	bias	of	 	as	an	estimator	for	 	is	the	
quantity	 .	An	unbiased	estimator	is	one	for	
which	the	bias	is	zero.


A	 	confidence	interval	estimate	for	parameter	 	is	an	
interval	that	includes	 	with	probability	

Y
p

Y p
(E[Y ] − p)

N % p
p N %
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Two	definitions	of	error
The	true	error	of	hypothesis	 	with	respect	to	target	function	 	and	
distribution	 	is	the	probability	that	 	will	misclassify	an	instance	drawn	at	
random	according	to	 





The	notation	 	denotes	that	the	probability	is	taken	over	distribution	 


The	sample	error	of	hypothesis	 	with	respect	to	target	function	 	and	data	
sample	 	is	the	proportion	of	examples	 	misclassifies


	


where	 	is	#	of	examples	in	 	and	 	is	 	if	 	and	 	
otherwise

h f
D h

D
errorD(h) ≡ Pr

x∈D
[ f(x) ≠ h(x)]

Pr
x∈D

D

h f
S h

errorS(h) ≡
1
n ∑

x∈S

δ( f(x), h(x))

n S δ( f(x), h(x)) 1 f(x) ≠ h(x) 0
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Sample	error	vs.	true	error
What	we’d	like	to	know:	true	error,	 


What	we	are	able	to	measure:	sample	error,	 


‣ Every	time	we	collect	a	sample	 	containing	new	randomly	drawn	
examples,	we	might	expect	the	sample	error	errors	to	vary	slightly	
from	the	sample	error	 .	We	expect	a	difference	due	to	the	
random	differences	in	 	and	 	


Questions:	

‣ How	good	an	estimate	of	 	is	provided	by	 ?	


‣ How	does	the	deviation	between	 	and 	depend	
on	the	size	of	the	data	sample?


errorD(h)

errorS(h)
S′￼

errorS(h)
S S′￼

errorD(h) errorS(h)
errorS(h) errorD(h)
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Problems	estimating	error

1. Bias:	if	 	is	training	set,	 	is	optimistically	
biased	





For	unbiased	estimate,	 	and	 	must	be	chosen	
independently.


2. 	Variance:	even	with	unbiased	 ,	 	may	still	
vary	from		 	

S errorS(h)

bias ≡ E[errorS(h)] − errorD(h)

h S

S errorS(h)
errorD(h)
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Example

Hypothesis	 	misclassifies	12	of	the	40	examples	in	 





What	is	 ?


h S

errorS(h) =
12
40

= .30

errorD(h)
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Estimators

Experiment

1. Choose	sample	 	of	size	 	according	to	distribution	 

2. Measure	 


	is	a	random	variable	(i.e.,	result	of	an	experiment)

	is	an	unbiased	estimator	for	 


Given	observed	 	what	can	we	conclude	about		 ?


S n D
errorS(h)

errorS(h)
errorS(h) errorD(h)

errorS(h) errorD(h)
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Confidence	intervals
If	


‣ 	contains	 	examples,	drawn	independently	of	 	according	to	probability	
distribution	 		


‣ 


‣ hypothesis	 	commits	 	errors	over	these	 	examples	(i.e.,	 )


Then	statistical	theory	says

‣ Given	no	other	information,	the	most	probable	value	of	 	is	 	


‣ With	approximately	 probability,	the	true	 	lies	in	the	interval





where

S n h
D

n ≥ 30
h r n errorS(h) = r/n

errorD(h) errorS(h)
95 % errorD(h)

errorS(h) ± 1.96
errorS(h)(1 − errorS(h))

n

N % : 50 % 68 % 80 % 90 % 95 % 98 % 99 %
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58



Suppose	that	 	independent	trials,	each	of	which	results	in	a	“success”	with	probability	 	and	in	a	
“failure”	with	probability	 ,	are	to	be	performed.	If	 	represents	the	number	of	successes	
that	occur	in	the	n	trials,	then	 	is	said	to	be	a	binomial	random	variable	with	parameters	 .

 
The	probability	mass	function	of	a	binomial	random	variable	having	parameters	 	is	given	by	





where





equals	the	number	of	different	groups	of	 	objects	that	can	be	chosen	from	a	set	of	 	objects.	The	
validity	of	this	equation	may	be	verified	by	first	noting	that	the	probability	of	any	particular	
sequence	of	the	n	outcomes	containing	 	successes	and	 	failures	is,	by	the	assumed	
independence	of	trials,	 	.

n p
1 − p X

X (n, p)

(n, p)

p(i) = (n
i )pi(1 − p)n−i, i = 0,1,…, n

(n
i ) =

n!
(n − i)!i!

i n

i n − i
pi(1 − p)n−i
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Binomial	random	variable
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	is	a	binomial	random	variableerrorS(h)
Rerun	the	experiment	with	different	randomly	drawn	 	(of	size	 )


Probability	of	observing	 	misclassified	examples:





S n

r

P(r) =
n!

r!(n − r)!
errorD(h)r(1 − errorD(h))n−r

Histogram	of	
frequency	with	which	
we	observe	each	

possible	sample	error
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	is	a	binomial	random	variableerrorS(h)




Probability	 	of	 	heads	in	 	coin	flips,	if	 


‣ Expected,	or	mean	value	of	 ,	 ,		is


	 


‣ Variance	of	 	is




‣ Standard	deviation	of	 ,	 ,	is





P(r) =
n!

r!(n − r)!
errorD(h)r(1 − errorD(h))n−r

P(r) r n p = Pr(heads)
X E[X]

E[X] ≡
n

∑
i=0

iP(i) = np

X
Var(X) ≡ E[(X − E[X])2] = np(1 − p)

X σX

σX ≡ E[(X − E[X])2] = np(1 − p)
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Normal	distribution	approximates	binomial

	follows	a	binomial	distribution	with	

mean	 


standard	deviation	 


Approximate	this	by	a	normal	distribution	with

mean	 


standard	deviation	 


errorS(h)
μerrorS

(h) = errorD(h)

σerrorS
(h) =

errorD(h)(1 − errorD(h)
n

μerrorS
(h) = errorD(h)

σerrorS
(h) ≈

errorS(h)(1 − errorS(h)
n
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Normal	probability	distribution




The	probability	that	 	will	fall	into	the	interval	 	is	given	

by	 


‣ Expected,	or	mean	value	of	 ,	 ,	is	 


‣ Variance	of	 	is	 


‣ Standard	deviation	of	 ,	 ,	is	 


p(x) =
1

2πσ2
e− 1

2 ( x − μ
σ )2

X (a, b)

∫
b

a
p(x)dx

X E[X] E[X] = μ
X Var(X) = σ2

X σX σX = σ
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Normal	probability	distribution

	of	area	(probability)	lies	in	 

	of	area	(probability)	lies	in	 


where

80 % μ ± 1.28σ
N % μ ± zNσ

N % : 50 % 68 % 80 % 90 % 95 % 98 % 99 %
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Confidence	intervals	more	correctly
If	


‣ 	contains	 	examples,	drawn	independently	of	 	according	to	probability	distribution	 		


‣ 


‣ hypothesis	 	commits	 	errors	over	these	 	examples	(i.e.,	 )


Then	statistical	theory	says

‣ With	approximately	 probability,	the	sample	error,	 	lies	in	the	interval





equivalently,	the	true	error,	 	lies	in	the	interval





which	is	approximately


S n h D
n ≥ 30

h r n errorS(h) = r/n

95 % errorS(h)

errorD(h) ± 1.96
errorD(h)(1 − errorD(h))

n

errorD(h)

errorS(h) ± 1.96
errorD(h)(1 − errorD(h))

n

errorS(h) ± 1.96
errorS(h)(1 − errorS(h))

n

Use	normal	standard	deviation	in	confidence	interval	not	
binomial	standard	deviation,	since	approximating	with	normal.
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Central	Limit	Theorem

Consider	a	set	of	independent,	identically	distributed	random	
variables	 	all	governed	by	an	arbitrary	probability	
distribution	with	mean	 	and	finite	variance	 .	Define	the	
sample	mean,





Central	Limit	Theorem.	As	 ,	the	distribution	governing	 	

approaches	a	normal	distribution,	with	mean	 	and	variance	

Y1…Yn
μ σ2

Ȳ ≡
1
n

n

∑
i=1

Yi

n → ∞ Ȳ

μ
σ2

n
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Calculating	confidence	intervals

1. Pick	parameter	 	to	estimate:	 


2. Choose	an	estimator:	 


3. Determine	probability	distribution	that	governs	estimator:	
	governed	by	Binomial	distribution	approximated	

by	Normal	when	 


4. Find	interval	 	such	that	 	of	probability	mass	falls	
in	the	interval:	use	table	of	 	values


p errorD(h)

errorS(h)

errorS(h)
n ≥ 30

(L, U) N %
zN
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Difference	between	hypotheses
Test	 	on	sample	 ,	test	 	on	 


1. Pick	parameter	to	estimate:	




2. Choose	an	estimator




3. Determine	probability	distribution	that	governs	estimator





4. Find	interval	 	such	that	 	of	probability	mass	falls	in	the	interval


					

h1 S1 h2 S2

d ≡ errorD(h1) − errorD(h2)

̂d ≡ errorS1
(h1) − errorS2

(h2)

σ2
̂d
≈

errorS1
(h1)(1 − errorS1

(h1))
n1

+
errorS2

(h2)(1 − errorS2
(h2))

n2

(L, U ) N %

̂d ± zn
errorS1

(h1)(1 − errorS1
(h1))

n1
+

errorS2
(h2)(1 − errorS2

(h2))
n2

Since	the	sum	of	two	independent	
normal	distributed	random	variables	
is	normal:	mean	is	the	sum	of	the	
two	means,	variance	is	the	sum	of	

the	two	variances



Aside

It	can	be	shown	that	the	difference	between	the	sample	errors,	 ,	
gives	an	unbiased	estimate	of	 ,	that	is	 


What	is	the	probability	distribution	governing	the	random	variable	
?	For	large	 	and	 	(e.g.,	both	 ,	both	 	and	

	follow	distributions	that	are	approximately	Normal.


Because	the	difference	of	two	Normal	distributions	is	also	a	Normal	
distribution,	 	will	also	follow	a	distribution	that	is	approximately	
Normal,	with	mean	 .	It	can	also	be	shown	that	the	variance	of	this	
distribution	is	the	sum	of	the	variances	of	 	and	

̂d
d E[ ̂d] = d

̂d n1 n2 ≥ 30 errorS1
(h1)

errorS2
(h2)

̂d
d

errorS1
(h1)

errorS2
(h2)
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Causes	of	estimation	error

Bias:	If	 	is	an	estimator	for	some	parameter	 ,	the	estimation	
bias	of	 	is	the	difference	between	 	and	the	expected	value	of	
.	For	example,	if	 	is	the	training	data	used	to	formulate	

hypothesis	 ,	then	 	gives	an	optimistically	biased	
estimate	of	the	true	error	 


Variance:	Even	with	an	unbiased	estimator,	the	observed	value	
of	the	estimator	is	likely	to	vary	from	one	experiment	to	
another.	The	variance	 	of	the	distribution	governing	the	
estimator	characterizes	how	widely	this	estimate	is	likely	to	vary	
form	the	correct	value.	This	variance	decreases	as	the	size	of	the	
data	sample	is	increased.

Y p
Y p

Y S
h errorS(h)

errorD(h)

σ2

40



BIAS	AND	VARIANCE	INTUITION
Evaluation
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The	i.i.d.	assumption

Training	and	test	items	are	independently	and	identically	
distributed	(i.i.d.):	


• There	is	a	distribution	 	from	which	the	data	
	is	generated.	Sometimes	it’s	useful	to	rewrite	

	as	 .	Usually	 	is	unknown	to	us	(we	
just	know	it	exists)


• Training	and	test	data	are	samples	drawn	from	the	same	
:	they	are	identically	distributed


• Each 	is	drawn	independently	from	

P(X, Y )
D = {(x, y)}
P(X, Y ) P(X)P(Y |X) P(X, Y )

P(X, Y )

(x, y) P(X, Y )
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Size	of	tree

Accuracy

On	test	data

On	training	data

Overfitting

A	decision	tree	overfits	the	training	data	when	its	accuracy	on	
the	training	data	goes	up	but	its	accuracy	on	unseen	data	
goes	down

Why	this	shape	
of	curves?	
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Model	complexity

Empirical	 
Error

Overfitting

Empirical	error	(=	on	a	given	data	set):

The	percentage	of	items	in	this	data	set	are	misclassified	
by	the	classifier	f.

??
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Overfitting

Model	complexity	(informally):

How	many	parameters	do	we	have	to	learn?

Decision	trees:	complexity	=	#	of	nodes

Model	complexity

Empirical	 
Error
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Model	complexity

Expected 
Error

Overfitting

Expected	error:

What	percentage	of	items	drawn	from	 	do	we	expect	to	
be	misclassified	by	 ?	

(That’s	what	we	really	care	about	–	generalization)

P(x, y)
f
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Model	complexity

Variance	of	a	learner	(informally)

How	susceptible	is	the	learner	to	minor	changes	in	the	training	data?	

– (i.e.	to	different	samples	from	 )


Variance	increases	with	model	complexity	

– Think	about	extreme	cases:	a	hypothesis	space	with	one	function	vs.	all	functions.	

– Or,	adding	the	“wind”	feature	in	the	decision	tree	earlier.

– The	larger	the	hypothesis	space	is,	the	more	flexible	the	selection	of	the	chosen	

hypothesis	is	as	a	function	of	the	data.	

– More	accurately:	for	each	sample	data	set	 ,	you	will	learn	a	different	hypothesis	 ,	

that	will	have	a	different	sample	error	 ;	we	are	looking	here	at	the	variance	of	this	
random	variable	from	the	true	error.	

P(x, y)

D h(D)
e(h)

Variance
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Model	complexity

Bias	of	a	learner	(informally)

How	likely	is	the	learner	to	identify	the	target	hypothesis?	

– Bias	is	low	when	the	model	is	expressive	(low	empirical	error)	

– Bias	is	high	when	the	model	is	(too)	simple

– The	larger	the	hypothesis	space	is,		the	easiest	it	is	to	be	close	to	the	true	

hypothesis.	

– More	accurately:	for	each	data	set	 ,	you	learn	a	different	hypothesis	 ,	that	

has	a	different	true	error	 ;	we	are	looking	here	at	the	difference	of	the	mean	
of	this	random	variable	from	the	true	error.	

D h(D)
e(h)

Bias
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Model	complexity

Expected 
Error

Impact	of	bias	and	variance

60

Expected	error	≈	bias	+	variance

Variance

Bias
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Model	complexity

Expected 
Error

Model	complexity

61

Simple	models:	 
High	bias	and	low	variance

Variance

Bias

Complex	models:	 
High	variance	and	low	bias	
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Model	complexity

Expected 
Error

Model	complexity

61

Simple	models:	 
High	bias	and	low	variance

Variance

Bias

Complex	models:	 
High	variance	and	low	bias	

Underfitting Overfitting

This	can	be	made	more	accurate	for	some	loss	functions.	

We	will	discuss	a	more	precise	and	general	theory	that	trades	
expressivity	of	models	with	empirical	error



Managing	of	bias	and	variance
Ensemble	methods	reduce	variance


• Multiple	classifiers	are	combined

• E.g.,	bagging,	boosting


Decision	trees	of	a	given	depth

• Increasing	depth	decreases	bias,	increases	variance


Neural	networks

• Deeper	models	can	increase	variance,	but	decrease	bias
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