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Today’s	Topics

Homework	2	out

– Due	Thursday,	September	23	by	11:59p


Random	variables

▪ Overview

▪ Bayes’	Rule

▪ Discrete:	Bernoulli,	Binomial

▪ Continuous:	Uniform

▪ Expectation

▪ Joint,	Independent

▪ Variance	and	Covariance	



OVERVIEW
Random	Variables



What	is	a	random	variable?
Suppose	we	perform	an	experiment,	tossing	dice


• Mainly	interested	in	functions	of	outcome	(e.g.,	is	the	sum	of	the	
two	dice	7)	rather	than	outcome	(such	as	(1,	6)	or	(2,	5)	or	(3,	4)	or	
(4,	3)	or	(5,	2)	or	(6,	1))


• These	quantities	of	interest	are	known	as	random	variables.	
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Random	variable

• Real-valued	function	defined	on	the	sample	space

• We	may	assign	probabilities	to	the	possible	values	of	the	
random	variable	because	value	of	a	random	variable	is	
determined	by	the	outcome	of	the	experiment	




Example
Letting	 	denote	the	random	variable	that	is	defined	as	the	sum	of	two	fair	dice;	then	


,   


,    


, 


,   


, 


,  


,  


,  


The random variable  can take on any integral value between  and , and the probability that it takes on each 
value is given above. Since  must take on one of the values  through , we must have 

X

P{X = 2} = P{(1,1)} =
1
36

P{X = 3} = P{(1,2), (2,1)} =
2
36

P{X = 4} = P{(1,3), (2,2), (3,1)} =
3
36

P{X = 5} = P{(1,4), (2,3), (3,2), (4,1)} =
4

36
P{X = 6} = P{(1,5), (2,4), (3,3), (4,2), (5,1)} =

5
36

P{X = 7} = P{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} =
6

36
P{X = 8} = P{(2,6), (3,5), (4,4), (5,3), (6,2)} =

5
36

P{X = 9} = P{(3,6), (4,5), (5,4), (6,3)} =
4
36

P{X = 10} = P{(4,6), (5,5), (6,4)} =
3
36

P{X = 11} = P{(5,6), (6,5)} =
2
36

P{X = 12} = P{(6,6)} =
1
36

X 2 12
X 2 12

1 = P {
12

⋃
i=2

{X = n}} =
12

∑
n=2

P{X = n}
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Example
Suppose	that	our	experiment	consists	of	tossing	two	fair	coins.	Letting	 	denote	the	
number	of	heads	appearing,	then	 	is	a	random	variable	taking	on	one	of	the	values	

	with	respective	probabilities

	


 







Of	course,	 


Y
Y

0,1,2

P{Y = 0} = P{(T, T )} =
1
4

P{Y = 1} = P{(T, H ), (H, T )} =
2
4

P{Y = 2} = P{(H, H )} =
1
4

P{Y = 0} + P{Y = 1} + P{Y = 2} = 1
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Example
Suppose	that	we	toss	a	coin	having	a	probability	 	of	coming	up	heads,	until	the	first	head	appears.	Letting	
	denote	the	number	of	flips	required,	then	assuming	that	the	outcome	of	successive	flips	are	

independent,	 	is	a	random	variable	taking	on	one	of	the	values	 ,	with	respective	probabilities	


 





 




As	a	check,	note	that	


		 








p
N

N 1,2,3,…,

P{N = 1} = P{H}
P{N = 2} = P{(T, H )} = (1 − p)p
P{N = 3} = P{(T, T, H )} = (1 − p)2 p
⋮
P{N = n} = P{(T, T, …, T, H )} = (1 − p)n−1p

P (
∞

⋃
n=1

{N = n}) =
∞

∑
n=1

P{N = n}

= p
∞

∑
n=1

(1 − p)n−1

=
p

1 − (1 − p)
= 1
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Example
Suppose	that	our	experiment	consists	of	seeing	how	long	a	battery	can	
operate	before	wearing	down.	Suppose	also	that	we	are	not	primarily	
interested	in	the	actual	lifetime	of	the	battery	but	are	concerned	only	about	
whether	or	not	the	battery	lasts	at	least	two	years.	In	this	case,	we	may	
define	the	random	variable	 	by	





If	 	denotes	the	event	that	the	battery	lasts	 	or	more	years,	then	the	
random	variable	 	is	known	as	the	indicator	random	variable	for	event	 .	
(Note	that	 	equals	 	or	 	depending	on	whether	or	not	 	occurs.)	


I

I = {1, if	the	lifetime	of	the	battery	is	2	or	more	years
0, otherwise

E 2
I E

I 1 0 E
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BAYES	FORMULA
Probability	Theory



Random	variable	with	arity	k

	is	a	random	variable	with	arity	 		if	it	can	take	on	exactly	
one	value	out	of	 .	Then


				if	 





X k
x1, x2, . . . , xk

P(X = xi ∩ X = xj) = 0 i ≠ j
P(X = x1 ∪ X = x2 ∪ … ∪ X = xk) = 1

k

∑
i=1

P(X = xi) = 1
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Marginalization
Let	 	and	 	be	events.	We	may	express	 	as	 	because	
in	order	for	a	point	to	be	in	 ,	it	must	either	be	in	both	 	and	 ,	or	it	must	be	
in	 	and	not	in	 .	Since	 	and	 	are	mutually	exclusive,	we	have	that	


 
										 

										 


The	probability	of	the	event	 	is	a	weighted	average	of	the	conditional	
probability	of	 	given	that	 	has	occurred	and	the	conditional	probability	of	 	
given	that	 	has	not	occurred,	each	conditional	probability	being	given	as	
much	weight	as	the	event	on	which	it	is	conditioned	has	of	occurring.


E F E E = (E ∩ F) ∪ (E ∩ Fc)
E E F

E F E ∩ F E ∩ Fc

P(E) = P(E ∩ F) + P(E ∩ Fc)
= P(E |F)P(F) + P(E |Fc)P(Fc)
= P(E |F)P(F) + P(E |Fc)(1 − P(F))

E
E F E

F
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Marginalization

Can	show	that







This	is	called	marginalization	over	

P(Y ) = P(Y ∩ {X = x1 ∪ X = x2 ∪ … ∪ X = xk})

P(Y ) =
k

∑
i=1

P(Y ∩ X = xi)

X
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Bayes’	Rule

Why	is	Bayes’	Rule	helpful?


Lets	us	build	one	conditional	from	its	reverse.	

• Often	one	conditional	is	tricky	but	the	other	one	is	simple

• In	the	running	for	most	important	AI	equation! 

13

Can	compute	 	from	 !P(F |E) P(E |F)

P(F |E) =
P(F ∩ E)

P(E)
=

P(E |F)P(F)
P(E |F)P(F) + P(E |Fc)(1 − P(F))
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Example
Consider	 	urns.	The	first	contains	 	white	and	 	black	balls,	and	the	second	contains	 	
white	and	 	black	balls.	We	flip	a	fair	coin	and	then	draw	a	ball	from	the	first	urn	or	the	
second	urn	depending	on	whether	the	outcome	was	heads	or	tails.	What	is	the	conditional	
probability	that	the	outcome	of	the	toss	was	heads	given	that	a	white	ball	was	selected?	


Solution:	Let	 	be	the	event	that	a	white	ball	is	drawn,	and	let	 		be	the	event	that	the	
coin	comes	up	heads.	Then:











2 2 7 5
6

W H

P(H |W ) =
P(HW )
P(W )

=
P(W |H )P(H )

P(W )

=
P(W |H )P(H )

P(W |H )P(H ) + P(W |Hc)P(Hc)

=
2
9

1
2

2
9

1
2 + 5

11
1
2

=
22
67
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Example
In	answering	a	question	on	a	multiple-choice	test	a	student	either	knows	the	answer	or	guesses.	Let	p	be	the	
probability	that	she	knows	the	answer	and	1	−	p	the	probability	that	she	guesses.	Assume	that	a	student	who	
guesses	at	the	answer	will	be	correct	with	probability	1/m,	where	m	is	the	number	of	multiple-choice	
alternatives.	What	is	the	conditional	probability	that	a	student	knew	the	answer	to	a	question	given	that	she	
answered	it	correctly?	


Solution:	Let	 	and	 	denote	respectively	the	event	that	the	student	answers	the	question	correctly	and	the	
event	that	she	actually	knows	the	answer.	Then:











For	example,	if	 ,	then	the	probability	that	a	student	knew	the	answer	to	a	question	she	

correctly	answered	is	

C K

P(K |C ) =
P(KC )
P(C )

=
P(C |K )P(K )

P(C |K )P(K ) + P(C |Kc)P(Kc)

=
p

p + 1
m (1 − p)

=
mp

1 + (m − 1)p

m = 5, p =
1
2

5
6
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Example
A	laboratory	blood	test	is	 	percent	effective	in	detecting	a	certain	disease	when	it	is,	in	fact,	present.	
However,	the	test	also	yields	a	“false	positive”	result	for	 	percent	of	the	healthy	persons	tested.	(That	is,	
if	a	healthy	person	is	tested,	then,	with	probability	 ,	the	test	result	will	imply	he	has	the	disease.)	If	

	percent	of	the	population	actually	has	the	disease,	what	is	the	probability	a	person	has	the	disease	
given	that	his	test	result	is	positive?	


	


Solution:	Let	 	be	the	event	that	the	tested	person	has	the	disease,	and	 	the	event	that	his	test	result	
is	positive.	Then:











Thus,	only	32	percent	of	those	persons	whose	test	results	are	positive	actually	have	the	disease.	


95
1

0.01
0.5

D E

P(D |E ) =
P(DE )
P(E )

=
P(E |D)P(D)

P(E |D)P(D) + P(E |Dc)P(Dc)

=
(0.95)(0.005)

(0.95)(0.005) + (0.01)(0.995)

=
95
294

≈ 0.323



Bayes’	rule	generalized

Suppose	that	 	are	mutually	exclusive	events	such	that	 .	In	other	words,	exactly	one	

of	the	events	 	will	occur.	By	writing	


 

								


and	using	the	fact	that	the	events	 ,	are	mutually	exclusive,	we	obtain	





							 


We	compute	 	by	first	“conditioning”	upon	which	one	of	the	 		occurs.	Suppose	now	that	 	has	
occurred	and	we	are	interested	in	determining	which	one	of	the	 	also	occurred.	We	then	generalize	
Bayes’	rule	to:


F1, F2, …, Fn

n

⋃
i=1

Fi = S

F1, F2, …, Fn

E =
n

⋃
i=1

E ∩ Fi

E ∩ Fi, i = 1,…, n

P(E ) =
n

∑
i=1

P(E ∩ Fi)

=
n

∑
i=1

P(E |Fi)P(Fi)

P(E ) Fi E
Fj

P(Fj |E ) =
P(EFj)
P(E )

=
P(E |Fj)P(Fj)

∑n
i=1 P(E |Fi)P(Fi)

17
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Example
You	know	that	a	certain	letter	is	equally	likely	to	be	in	any	one	of	three	different	
folders.	Let	 	be	the	probability	that	you	will	find	your	letter	upon	making	a	quick	
examination	of	folder	 	if	the	letter	is,	in	fact,	in	folder	 ,	 .	(We	may	have	

.)	Suppose	you	look	in	folder	 	and	do	not	find	the	letter.	What	is	the	
probability	that	the	letter	is	in	folder	 ?	


Solution:	Let	 	be	the	event	that	the	letter	is	in	folder	 ;	and	let	 	be	
the	event	that	a	search	of	folder	 	does	not	come	up	with	the	letter.	We	desire	

.	From	Bayes’	formula	we	obtain	





αi
i i i = 1,2,3

αi < 1 1
1

Fi, i = 1,2,3 i E
1

P(F1 |E)

P(F1 |E) =
P(E |F1)P(F1)

∑3
i=1 P(E |Fi)P(Fi)

=
(1 − α1)

1
3

(1 − α1)
1
3 + 1

3 + 1
3

=
1 − α1

3 − α1



DISCRETE
Random	Variables



	Discrete	Random	Variables
A	random	variable	that	can	take	on	at	most	a	countable	number	of	possible	values	is	said	to	be	
discrete.	For	a	discrete	random	variable	 ,	we	define	the	probability	mass	function	 	of	 	by	




 
The	probability	mass	function		 	is	positive	for	at	most	a	countable	number	of	values	of	 .	
That	is,	if	 	must	assume	one	of	the	values	 ,	then	




	all	other	values	of	 


p(xi)	>	0,	i	=	1,2,...	

 
Since	 	must	take	on	one	of	the	values	 	,	we	have	


X p(a) X

p(a) = P{X = a}

p(a) a
X x1, x2, …

p(xi) > 0, i = 1,2,…
p(x) = 0, x

X xi

∞

∑
x=1

p(xi) = 1

20



	Discrete	Random	Variables
The	cumulative	distribution	function	 	can	be	expressed	in	terms	of	 	by	





For	instance,	suppose	 	has	a	probability	mass	function	given	by


,						 ,					 


then,	the	cumulative	distribution	function	 	of	 	is	given	by	





Discrete	random	variables	are	often	classified	according	to	their	probability	mass	functions.	We	now	
consider	some	of	these	random	variables.	

F p(a)
F(a) = ∑

all	xi≤a

p(xi)

X

p(1) =
1
2

p(2) =
1
3

p(3) =
1
6

F X

F(a) =

0, a < 1
1
2 , 1 ≤ a < 2
5
6 , 2 ≤ a < 3
1, 3 ≤ a

21

From	Introduction	to	Probability	Models	by	
Sheldon	M.	Ross



	Bernouilli	Random	Variable
Suppose	that	a	trial,	or	an	experiment,	whose	outcome	can	be	classified	as	
either	a	“success”	or	as	a	“failure”	is	performed.	


If	we	let	X	equal	1	if	the	outcome	is	a	success	and	 	if	it	is	a	failure,	then	the	
probability	mass	function	of	X	is	given	by

	







where	 	is	the	probability	that	the	trial	is	a	“success.”

 
A	random	variable	 	is	said	to	be	a	Bernoulli	random	variable	if	its	probability	
mass	function	is	given	by	the	above	equation	for	some	 	


0

p(0) = P{X = 0} = 1 − p
p(1) = P{X = 1} = p

p, 0 ≤ p ≤ 1

X
p ∈ (0,1)
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	Binomial	Random	Variable
Suppose	that	 	independent	trials,	each	of	which	results	in	a	“success”	with	probability	 	and	in	a	
“failure”	with	probability	 ,	are	to	be	performed.	If	 	represents	the	number	of	successes	
that	occur	in	the	n	trials,	then	 	is	said	to	be	a	binomial	random	variable	with	parameters	 .

 
The	probability	mass	function	of	a	binomial	random	variable	having	parameters	 	is	given	by	





where





equals	the	number	of	different	groups	of	 	objects	that	can	be	chosen	from	a	set	of	 	objects.	The	
validity	of	this	equation	may	be	verified	by	first	noting	that	the	probability	of	any	particular	
sequence	of	the	n	outcomes	containing	 	successes	and	 	failures	is,	by	the	assumed	
independence	of	trials,	 	.

n p
1 − p X

X (n, p)

(n, p)

p(i) = (n
i )pi(1 − p)n−i, i = 0,1,…, n

(n
i ) =

n!
(n − i)!i!

i n

i n − i
pi(1 − p)n−i
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CONTINUOUS
Random	Variables



Continuous	Random	Variables
Let	 	be	such	a	random	variable	whose	set	of	possible	values	is	uncountable.	We	say	that	
	is	a	continuous	random	variable	if	there	exists	a	nonnegative	function	 ,	defined	for	

all	real	 ,	having	the	property	that	for	any	set	 	of	real	numbers	





The	function	 	is	called	the	probability	density	function	of	the	random	variable	 .	The	
probability	that	 	will	be	in	 	may	be	obtained	by	integrating	the	probability	density	
function	over	the	set	 .	Since	 	must	assume	some	value,	 	must	satisfy	





All	probability	statements	about	 	can	be	answered	in	terms	of	 .	For	instance,	letting	
,	we	obtain


X
X f (x)

x ∈ (−∞, ∞) B

P{X ∈ B} = ∫B
f (x)dx

f (x) X
X B

B X f (x)

P{X ∈ (−∞, ∞)} = ∫
∞

−∞
f (x)dx = 1

X f (x)
B = [a, b]

P{a ≤ X ≤ b} = ∫
b

a
f (x)dx = 1
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Continuous	Random	Variables
If	we	let	 	then	the	probability	that	a	continuous	random	variable	will	assume	any	
particular	value	is	zero.	





The	relationship	between	the	cumulative	distribution	 	and	the	probability	density	
	is	expressed	by	





Differentiating	both	sides	of	the	preceding	yields





That	is,	the	density	is	the	derivative	of	the	cumulative	distribution	function.

a = b

P{a ≤ X ≤ b} = ∫
a

a
f (x)dx = 0

F( ⋅ )
f ( ⋅ )

F(a) = P{X ∈ (−∞, a]} = ∫
a

−∞
f (x)dx = 0

d
da

F(a) = f (a)
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Uniform	Random	Variable
A	random	variable	is	said	to	be	uniformly	distributed	over	the	interval	(0,	1)	if	its	probability	density	function	is	given	
by	





Note	that	the	preceding	is	a	density	function	since	 	and	





Since	 	only	when	 ,	it	follows	that	 	must	assume	a	value	in	 .	Also,	since	 	is	constant	for	
,	 	is	just	as	likely	to	be	“near”	any	value	in	 	as	any	other	value.	To	check	this,	note	that,	for	any	

,	


	 


In	other	words,	the	probability	that	 	is	in	any	particular	subinterval	of	 	equals	the	length	of	that	subinterval.	


In	general,	we	say	that	 	is	a	uniform	random	variable	on	the	interval	 	if	its	probability	density	function	is	given	
by	


f (x) = {1, 0 < x < 1
0, otherwise

f (x) ≥ 0

∫
∞

−∞
f (x)d x = ∫

1

0
d x = 1

f (x) > 0 x ∈ (0,1) X (0,1) f (x)
x ∈ (0,1) X (0,1)
0 < a < b < 1

P{a ≤ X ≤ b} = ∫
b

a
f (x)d x = b − a

X (0,1)

X (α, β )

f (x) = {
1

β − α , if	α < x < β

0, otherwise
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Example
Calculate	the	cumulative	distribution	function	of	a	random	variable	uniformly	distributed	
over	 .


 

Solution:	Since	 ,	we	obtain	


(α, β)

F(a) = ∫
a

−∞
f (x)dx

F(a) =
0, a ≤ α
a − α
β − α , α < a < β

1, a ≥ α
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Example
If	 	is	uniformly	distributed	over	 ,	calculate	the	probability	that	(a)	 ,	(b)	 ,	
(c)	 .	


Solution:	


 




X (0,10) X < 3 X > 7
1 < X < 6

P{X < 3} =
∫ 3

0
dx

10
=

3
10

P{X > 7} =
∫ 10

7
dx

10
=

3
10

P{1 < X < 6} =
∫ 6

1
dx

10
=

1
2
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EXPECTATION
Random	Variables
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Expectation	of	a	discrete	random	variable

If	 	is	a	discrete	random	variable	having	a	probability	mass	function	
,	then	the	expected	value	of	 	(aka,	the	mean)		is	defined	by


	 	 


In	other	words,	the	expected	value	of	 	is	a	weighted	average	of	
the	possible	values	that	 	can	take	on,	each	value	being	weighted	
by	the	probability	that	 	assumes	that	value.	


X
p(x) X

E[X] = ∑
x:p(x)>0

xp(x)

X
X

X
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Example
If	the	probability	mass	function	of	 	is	given	by	





then			





is	just	an	ordinary	average	of	the	two	possible	values	 	and	 	that	 	can	assume.	On	the	other	hand,	if	





then	





is	a	weighted	average	of	the	two	possible	values	 	and	 	where	the	value	 	is	given		twice	as	much	
weight	as	the	value	 	since	 .

X

p(1) =
1
2

, p(2) =
1
2

E[X ] = 1 ( 1
2 ) + 2 ( 1

2 ) =
3
2

1 2 X

p(1) =
1
3

, p(2) =
2
3

E[X ] = 1 ( 1
3 ) + 2 ( 2

3 ) =
5
3

1 2 2
1 p(2) = 2p(1)
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Example
Find	 	where	 	is	the	outcome	when	we	roll	a	fair	die.	


Solution:	Since	 	,	we	obtain	


E[X ] X

p(1) = p(2) = p(3) = p(4) = p(5) = p(6) =
1
6

E[X ] = 1 ( 1
6 ) + 2 ( 1

6 ) + 3 ( 1
6 ) + 4 ( 1

6 ) + 5 ( 1
6 ) + 6 ( 1

6 ) =
7
2
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Example
(Expectation	of	a	Bernoulli	Random	Variable)	Calculate	 	when	 	is	a	Bernoulli	
random	variable	with	parameter	 .	


Solution:	Since	


,	


then





Thus,	the	expected	number	of	successes	in	a	single	trial	is	just	the	probability	that	


the	trial	will	be	a	success.	


E[X ] X
p

p(0) = 1 − p, p(1) = p

E[X ] = 0(1 − p) + 1(p) = p
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Expectation	of	a	function	of	a	random	variable
Suppose	we	are	given	a	random	variable	 	and	its	probability	distribution	(that	is,	its	
probability	mass	function	in	the	discrete	case	or	its	probability	density	function	in	the	
continuous	case).	


Suppose	also	that	we	are	interested	in	calculating	not	the	expected	value	of	 ,	but	the	
expected	value	of	some	function	of	 ,	say,	 .	How	do	we	go	about	doing	this?	One	way	
is	as	follows.	Since	 	is	itself	a	random	variable,	it	must	have	a	probability	distribution,	
which	should	be	computable	from	a	knowledge	of	the	distribution	of	 .	Once	we	have	
obtained	the	distribution	of	 ,	we	can	then	compute	 	by	the	definition	of	the	
expectation.	


If	 	is	a	discrete	random	variable	with	probability	mass	function	 ,	then	for	any	real-
valued	function	 


X

X
X g(X )

g(X )
X

g(X ) E[g(X )]

X p(x)
g

E[g(X )] = ∑
x:p(x)>0

g(x)p(x)
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Example
Suppose	 	has	the	following	probability	mass	function:	


	


Calculate	 . 

Solution:	Letting	 ,	we	have	that	 	is	a	random	variable	that	can	take	on	one	of	the	values	
	with	respective	probabilities	











Hence,





Note	that		 


X

p(0) = 0.2, p(1) = 0.5, p(2) = 0.3

E[X2]

Y = X2 Y
02,12,22

pY(0) = P{Y = 02} = 0.2

pY(1) = P{Y = 12} = 0.5

pY(4) = P{Y = 22} = 0.3

E[X2] = E[Y ] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7

1.7 = E[X2] ≠ (E[X ])2 = 1.21



JOINT,		INDEPENDENT
Random	Variables
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Joint	cumulative	probability	distribution	function
Thus	far,	we	have	concerned	ourselves	with	the	probability	distribution	of	a	single	random	
variable.	However,	we	are	often	interested	in	probability	statements	concerning	two	or	
more	random	variables.	To	deal	with	such	probabilities,	we	define,	for	any	two	random	
variables	 	and	 	,	the	joint	cumulative	probability	distribution	function	of	 	and	 	by	





The	distribution	of	 	can	be	obtained	from	the	joint	distribution	of	 	and	 	as	follows:	





 
Similarly,	the	cumulative	distribution	function	of	 	is	given	by	


 

X Y X Y

F(a, b) = P{X ≤ a, Y ≤ b}, − ∞ < a, b < ∞

X X Y

FX(a) = P{X ≤ a} = P{X ≤ a, Y < ∞} = F(a, ∞)

Y

FY(b) = P{Y ≤ b} = F(∞, b)
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Joint	probability	mass	function
In	the	case	where	 	and	 	are	both	discrete	random	variables,	it	is	convenient	to	define	
the	joint	probability	mass	function	of	 	and	 	by	 


The	probability	mass	function	of	 	may	be	obtained	from	 	by	





Similarly,	


 

X Y
X Y p(x, y) = P{X = x, Y = y}

X p(x, y)

pX(x) = ∑
y:p(x,y)>0

p(x, y)

pY(y) = ∑
x:p(x,y)>0

p(x, y)
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Expectation
If	 	and	 	are	both	discrete	random	variables	and	 	is	a	function	of	two	variables,	then





and	for	any	constants	 	and	 





X Y g

E[g(X, Y )] = ∑
y

∑
x

g(x, y)p(x, y)

a b

E[aX + bY ] = aE[X ] + bE[Y ]
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Example
Calculate	the	expected	sum	obtained	when	three	fair	dice	are	rolled.	


Solution:	Let	 	denote	the	sum	obtained.	Then	 	where	 		represents	
the	value	of	the	 th	die.	Thus,


X X = X1 + X2 + X3 Xi
i

E[X ] = E[X1] + EX2] + E[X3] = 3 ( 7
2 ) =

21
2
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Independent	random	variables
The	random	variables	 	and	 	are	said	to	be	independent	if,	for	all	 





In	other	words,	 	and	 	are	independent	if,	for	all	 	and	 ,	the	events	 	and	
	are	independent


X Y a, b,

P{X ≤ a, Y ≤ b} = P{X ≤ a}P{Y ≤ b}

X Y a b Ea = {X ≤ a}
Fb = {Y ≤ b}
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Independent	random	variables
In	terms	of	the	joint	distribution	function	 	of	 	and	 ,	we	have	that	 	and	 	are	
independent	if,	for	all	 





When		 	and	 	are	discrete,	the	condition	of	independence	reduces	to	


F X Y X Y
a, b,

F(a, b) = FX(a)FY(b) 	for	all	a, b

X Y

p(x, y) = pX(x)pY(y)



VARIANCE	AND	COVARIANCE
Random	Variables
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More	on	variance

The	variance	of	X	is	equal	to	the	expected	value	of	X2	
minus	the	square	of	its	mean





Proof:




														 


														 


														

Var(X) = E[X2] − (E[X])2 = E[X2] − μ2
X

Var(X) = E[(X − μX)2]
= E[X2 − 2μXX + μ2

X]
= E[X2] − 2μXE[X] + μ2

X

= E[X2] − μ2
X


