
Lecture 23: Recurrent Neural Networks
Again

COMP 411, Fall 2021
Victoria Manfredi

These	slides	are	based	on	figures	and	info	from	Andrej	Karpathy’s	blog,	slides	created	by	
Justin	Johnson	(U	of	Michigan)	and	Geoffrey	Hinton	(U	of	Toronto),	and	the	book	Deep	

Learning	by	Ian	Goodfellow,	Yoshua	Bengio,	and	Aaron	Courville

vumanfredi@wesleyan.edu 2

Today’s	Topics

Recurrent	Neural	Networks	
▪ Backpropagation	through	time	
▪ Vanilla	RNN	gradient	flow	
▪ Issues	
▪ Some	examples

BACKPROPAGATION	THROUGH	
TIME

Recurrent	Neural	Networks

Backpropagation	through	time

Loss

Forward	through	entire	sequence	to	compute	loss

Backpropagation	through	time

Loss

Backward	through	entire	sequence	to	compute	gradient

Backpropagation	through	time

Loss

Problem:	takes	a	lot	of	memory	for	long	sequences

Truncated	backpropagation	through	time

Loss
Run	forward	and	backward	
through	chunks	of	the	
sequence	instead	of	the	
whole	sequence

Truncated	backpropagation	through	time

Loss Carry	hidden	states	
forward	in	time	but	
only	backpropagate	
for	some	smaller	
number	of	steps

Truncated	backpropagation	through	time

Loss

VANILLA	RNN	GRADIENT	FLOW	
Recurrent	Neural	Networks

Backpropagation	with	weight	constraints

11

• It	is	easy	to	modify	the	backprop	
algorithm	to	incorporate	linear	
constraints	between	the	
weights.	

• We	compute	the	gradients	as	
usual,	and	then	modify	the	
gradients	so	that	they	satisfy	the	
constraints.	
– So	if	the	weights	started	off	

satisfying	the	constraints,	
they	will	continue	to	satisfy	
them.

21
21

21

21

21

:

:
:

wandwfor
w
E

w
E

use

w
E

and
w
E

compute

wwneedwe
wwconstrainTo

∂

∂
+

∂

∂

∂

∂

∂

∂

Δ=Δ

=

Backpropagation	through	time
▪ We	can	think	of	an	RNN	as	a	layered,	feed-forward	net	with	

shared	weights	and	then	train	the	feed-forward	net	with	
weight	constraints.	

▪ We	can	also	think	of	this	training	algorithm	in	the	time	
domain:		
– The	forward	pass	builds	up	a	stack	of	the	activities	of	all	
the	units	at	each	time	step.		

– The	backward	pass	peels	activities	off	the	stack	to	
compute	the	error	derivatives	at	each	time	step.		

– After	the	backward	pass	we	add	together	the	derivatives	
at	all	the	different	times	for	each	weight.

12

An	irritating	extra	issue
▪ We	need	to	specify	the	initial	activity	state	of	all	the	hidden	and	

output	units.		

▪ We	could	just	fix	these	initial	states	to	have	some	default	value	
like	0.5.	

▪ But	it	is	better	to	treat	the	initial	states	as	learned	parameters.	

▪ We	learn	them	in	the	same	way	as	we	learn	the	weights.	
– Start	off	with	an	initial	random	guess	for	the	initial	states.	
– At	the	end	of	each	training	sequence,	backpropagate	through	
time	all	the	way	to	the	initial	states		to	get	the	gradient	of	the	
error	function	with	respect	to	each	initial	state.	

– Adjust	the	initial	states	by	following	the	negative	gradient.

13

Recurrent	neural	network

h

o

x

L

Map	input	sequence	of	 	values	to	corresponding	sequence	of	
output	 	values.	

Loss	 	measures	how	far	each	 	is	from	the	corresponding	
training	target	 	

Input	to	hidden	connections	parametrized	by	weight	matrix	 		

Hidden-to-hidden	recurrent	connections	parametrized	by	weight	
matrix	 	

Hidden-to-output	connections	parametrized	by	weight	matrix	 	

x
o

L o
y

U

W

V

V

y

U

W

Forward	propagation

h

o

x

L

Assume	hyperbolic	tangent	activation	function	for	hidden	units.	
Assume	output	is	discrete.	View	output	 	as	giving	the	unnormalized	
log	probabilities	of	each	possible	value	of	the	discrete	variable.	Apply	
the	softmax	operation	as	a	post-processing	step	to	obtain	a	vector	 	
of	normalized	probabilities	over	the	output.		

Forward	propagation	begins	with	a	specification	of	the	initial	state	
.	Then,	for	each	time	step	from	 	to	 ,	where	 	is	the	final	

step,	we	apply	the	following	update	equations	where	the	parameters	
are	the	bias	vectors	 	and	 	along	with	the	weight	matrices	 ,	 ,	and	

	

	
	
	

	

o

ŷ

h(0) t = 1 t = τ τ

b c U V
W

a(t) = b + Wh(t−1) + Ux(t)

h(t) = tanh(a(t))
o(t) = c + Vh(t)

ŷ(t) = so[max(o(t))

V

y

U

W

Forward	propagation

h

o

x

L

This	recurrent	network	maps	an	input	sequence	to	an	output	
sequence	of	the	same	length.	The	total	loss	for	a	given	sequence	of	 	
values	paired	with	a	sequence	of	 	values	is	the	sum	of	the	losses	
over	all	the	time	steps.	For	example,	if	 	is	the	negative	log-
likelihood	of	 	given	 ,	then	

	
						 	

						 	

where	 	is	given	by	reading	the	entry	for	
from	the	model’s	output	vector	

x
y

L(t)

y(t) x(1), …, x(t)

L ({x(1), …, x(τ)}, {y(1), …, y(τ)})
= ∑

t

L(t)

= − ∑
t

log pmodel (y(t) |x(1), …, x(τ))

pmodel(y(t) |x(1), …, x(τ)) y(t)

ŷ(t)

V

y

U

W Log	loss

Backward	propagation	through	time

h

o

x

L

V

y

U

W h(t−1)

o(t−1)

x(t−1)

L(t−1)

V

y(t−1)

U

V

U

V

U

W W W… …

y(t) y(t+1)

L(t) L(t+1)

o(t) o(t+1)

x(t) x(t+1)

h(t) h(t+1)

Unfold

Backward	propagation	through	time

h(t−1)

o(t−1)

x(t−1)

L(t−1)

V

y(t−1)

U

V

U

V

U

W W W… …

y(t) y(t+1)

L(t) L(t+1)

o(t) o(t+1)

x(t) x(t+1)

h(t) h(t+1)

Computing	the	gradient	of	loss	function	 	
with	respect	to	the	parameters	involves	
performing	a	forward	propagation	pass	
moving	left	to	right	through	the	unrolled	
graph,	followed	by	a	backward	propagation	
pass	moving	right	to	left	through	the	graph.	

For	each	node	 	we	need	to	compute	the	
gradient 	recursively,	based	on	the	
gradient	computed	at	nodes	that	follow	it	in	
the	graph.	We	start	the	recursion	with	the	
nodes	immediately	preceding	the	final	loss:	

		

then	compute	 ,	 ,	 ,	 ,	
, ,	 ,	

L

N
∇N L

∂L
∂L(t)

= 1

∇o(t)L ∇h(τ)L ∇h(t)L ∇cL
∇bL ∇VL ∇WL ∇UL

Backward	propagation	through	time

h(t−1)

o(t−1)

x(t−1)

L(t−1)

V

y(t−1)

U

V

U

V

U

W W W… …

y(t) y(t+1)

L(t) L(t+1)

o(t) o(t+1)

x(t) x(t+1)

h(t) h(t+1)

Backpropagation	through	time	is	
computationally	expensive.	For	a	single	
weight	update,	need	to	update	based	on	
sequence	length.	Multiple	outputs	means	
more	of	these	updates	taking	into	
consideration	sequence	length.	

Can	we	do	better?	Truncated	
Backpropagation	Through	Time	

Vanilla	RNN	Gradient	Flow

20
Bengio	et	al,	“Learning	long-term	dependencies	with	gradient	descent	is	difficult”,	IEEE	Transacaons	on	Neural	
Networks,	1994	Pascanu	et	al,	“On	the	difficulty	of	training	recurrent	neural	networks”,	ICML	2013	

W tanh

ht−1 ht

xt

stack

ht = tanh(Whhht−1 + Wxhxt)

= tanh ((Whh Wxh)(ht−1
xt))

= tanh (W (ht−1
xt))

Vanilla	RNN	Gradient	Flow

21
Bengio	et	al,	“Learning	long-term	dependencies	with	gradient	descent	is	difficult”,	IEEE	Transacaons	on	Neural	
Networks,	1994	Pascanu	et	al,	“On	the	difficulty	of	training	recurrent	neural	networks”,	ICML	2013	

W tanh

ht−1 ht

xt

stack

ht = tanh(Whhht−1 + Wxhxt)

= tanh ((Whh Wxh)(ht−1
xt))

= tanh (W (ht−1
xt))

Backpropagation	from	 	to	 	
multiplies	by	 	(actually)

ht ht−1
W WT

hh

Vanilla	RNN	Gradient	Flow

22

W tanh

h0 h1

x1

stack

W tanh

h2

x2

stack

W tanh

x3

stack

W tanh

h3 h4

x4

stack

Computing	gradient	
of	 	include	many	
factors	of	 	(and	
repeated)

h0
W
tanh

Largest	singular	value	>	1:	
Exploding	gradients	

Largest	singular	value	<	1:	
Vanishing	gradients

Vanilla	RNN	Gradient	Flow

23

W tanh

h0 h1

x1

stack

W tanh

h2

x2

stack

W tanh

x3

stack

W tanh

h3 h4

x4

stack

Computing	gradient	
of	 	include	many	
factors	of	 	(and	
repeated)

h0
W
tanh

Largest	singular	value	>	1:	
Exploding	gradients	

Largest	singular	value	<	1:	
Vanishing	gradients

Gradient	clipping:	
scale	gradient	if	its	
norm	is	too	big

Change	RNN	
architecture!

Vanilla	RNN	Gradient	Flow

24

W tanh

h0 h1

x1

stack

W tanh

h2

x2

stack

W tanh

x3

stack

W tanh

h3 h4

x4

stack

Computing	gradient	
of	 	include	many	
factors	of	 	(and	
repeated)

h0
W
tanh

Largest	singular	value	>	1:	
Exploding	gradients	

Largest	singular	value	<	1:	
Vanishing	gradients

ISSUES
Recurrent	Neural	Networks

Bi-directional	RNN

▪ One	of	the	issues	with	RNN:		
– Hidden	variables	capture	only	one	side	context	

▪ A	bi-directional	structure

26

RNN Bi-directional RNN

For example mask out a word in sentence
and then try to predict that word. Having full

context of sentence is helpful: e.g., later
words may give context to earlier words.

The	problem	of	exploding	or	vanishing	gradients
What	happens	to	the	magnitude	of	the	gradients	as	we	backpropagate	
through	many	layers?		

– If	the	weights	are		small,	the	gradients	shrink	exponentially	
– If	the	weights	are	big	the	gradients	grow	exponentially	

Typical	feed-forward	neural	nets	can	cope	with	these	exponential	effects	
because	they	only	have	a	few	hidden	layers	

In	an	RNN	trained	on	long	sequences	(e.g.	100	time	steps)	the	gradients	can	
easily	explode	or	vanish.	

– We	can	avoid	this	by	initializing	the	weights	very	carefully.	

Even	with	good	initial	weights,	its	very	hard	to	detect	that	the	current	target	
output	depends	on	an	input	from	many	time-steps	ago.	

– So	RNNs	have	difficulty	dealing	with	long-range	dependencies.

27

The	problem	of	exploding	or	vanishing	gradients

Recurrent	networks	use	the	same	matrix	 	at	each	
timestep	but	feedforward	networks	do	not,	so	even	very	
deep	feedforward	networks	can	largely	avoid	the	
vanishing	and	exploding	gradient	problem

W

28

The	problem	of	exploding	or	vanishing	gradients
The	function	composition	employed	by	RNNs	somewhat	resembles	matrix	multiplication.	
We	can	think	of	the	recurrence	relation		

		

as	a	very	simple	RNN	lacking	a	nonlinear	activation	function	and	lacking	inputs	 .	It	may	
be	simplified	to		

		

and	if	 	admits	an	eigendecomposition	of	the	form	 	with	orthogonal	 ,	the	
recurrence	may	be	simplified	further	to		

	

The	eigenvalues	are	raised	to	the	power	of	 	causing	eigenvalues	with	magnitude	less	than	
one	to	decay	to	zero	and	eigenvalues	with	magnitude	greater	than	zero	to	explode.	Any	
component	of	 	that	is	not	aligned	with	the	largest	eigenvalue	will	eventually	be	
discarded

h(t) = WTh(t−1)

x

h(t) = (Wt)Th(0)

W W = QΛQT Q

h(t) = QTΛtQh(0)

t

h(0)

29

The	backward	pass	is	linear
There	is	a	big	difference	between	the	
forward	and	backward	passes.	

In	the	forward	pass	we	use	squashing	
functions	(like	the	logistic)	to	prevent	the	
activity	vectors	from	exploding.	

The	backward	pass,	is	completely	linear.	If	
you	double	the	error	derivatives	at	the	final	
layer,	all	the	error	derivatives	will	double.		

– The	forward	pass	determines	the	
slope	of	the	linear	function	used	for	
backpropagating	through	each	
neuron.

30

Can	we	show	why	this	is	true	mathematically?	

Vanishing/exploding	gradients	

Vanishing	gradients	are	quite	prevalent	and	a	serious	issue.			

A	real	example		
– Training	a	feed-forward	network		
– y-axis:	sum	of	the	gradient	norms	
– Earlier	layers	have	exponentially		
smaller	sum	of	gradient	norms	
– This	will	make	training	earlier		
layers	much	slower.	

31

Gradient	can	become	very	small	or	very	large	quickly,	and	the	locality	
assumption	of	gradient	descent	breaks	down	(Vanishing	gradient)	

[Bengio	et	al	1994]

Vanishing/exploding	gradients	
In	an	RNN	trained	on	long	sequences	(e.g.	100	time	steps)	the	gradients	can	
easily	explode	or	vanish.	

– So	RNNs	have	difficulty	dealing	with	long-range	dependencies.	

Many	methods	proposed	for	reduce	the	effect	of	vanishing	gradients;	although	
it	is	still	a	problem		

– Introduce	shorter	path	between	long	connections		
– Abandon	stochastic	gradient	descent	in	favor	of	a	much	more	
sophisticated	Hessian-Free	(HF)	optimization	

– Add	fancier	modules	that	are	robust	to	handling	long	memory;	e.g.	Long	
Short	Term	Memory	(LSTM)		

One	trick	to	handle	the	exploding-gradients:		
– Clip	gradients	with	bigger	sizes:

32

Define . If then 𝑔 =
𝜕𝐸
𝜕𝑊

𝑔 ≥ 𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑 𝑔 ←
𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑

𝑔
𝑔

||g||	is	dot	product	/magnitude

Name	for	doing	this	simplification	with	a	
vector:	g	/||g||	would	just	be	unit	
vector,	so	here	we	would	get	just	a	
threshold	vector	below

SOME	EXAMPLES
Recurrent	Neural	Networks

min-char-rnn.py:	112	lines	of	Python

34
https://gist.github.com/karpathy/

d4dee566867f8291f086

The	sonnets

35

by	William	Shakespeare

y

x

RNN

36

at	first:

37

at	first:

train	more

38

at	first:

train	more

train	more

39

at	first:

train	more

train	more

train	more

40

41

42

Generated		
C	code

43

44

