Lecture 23: Recurrent Neural Networks
Again

COMP 411, Fall 2021
Victoria Manfredi

WESLEYAN

v N I Vv E R § I T Y

»
»®
‘0

These slides are based on figures and info from Andrej Karpathy’s blog, slides created by
Justin Johnson (U of Michigan) and Geoffrey Hinton (U of Toronto), and the book Deep
Learning by lan Goodfellow, Yoshua Bengio, and Aaron Courville

Today’s Topics

Recurrent Neural Networks
= Backpropagation through time
= Vanilla RNN gradient flow
= |ssues
= Some examples

Recurrent Neural Networks

BACKPROPAGATION THROUGH
TIME

Backpropagation through time

Loss

NS

tr +t t 1t 1

T

!

!

!

rtt 1t t 1

T

T

f

f

Forward through entire sequence to compute loss

Backpropagation through time

Loss

AN

Backward through entire sequence to compute gradient

Backpropagation through time

Loss

AN

Problem: takes a lot of memory for long sequences

Truncated backpropagation through time

Loss
Run forward and backward

through chunks of the
sequence instead of the
/ / \ \ whole sequence

Truncated backpropagation through time

Loss

t 1

t 1

ZAN

T

T

T

f

Carry hidden states
forward in time but
only backpropagate
for some smaller
number of steps

Truncated backpropagation through time

/

Loss

/AN

—>

—>

T

f

f

>

Recurrent Neural Networks
VANILLA RNN GRADIENT FLOW

Backpropagation with weight constraints

e |tis easy to modify the backprop
algorithm to incorporate linear
constraints between the
weights.

 We compute the gradients as
usual, and then modify the
gradients so that they satisfy the
constraints.

— So if the weights started off
satisfying the constraints,
they will continue to satisfy
them.

To constrain: wy;=w,

we need: Aw;=Aw,

oF oF
compute: —— and ——
aWI 8W2
oE OF
use + for wi and wy
aWI 8W2

Backpropagation through time

We can think of an RNN as a layered, feed-forward net with

shared weights and then train the feed-forward net with
weight constraints.

We can also think of this training algorithm in the time
domain:

— The forward pass builds up a stack of the activities of all
the units at each time step.

— The backward pass peels activities off the stack to
compute the error derivatives at each time step.

— After the backward pass we add together the derivatives
at all the different times for each weight.

An irritating extra issue

= We need to specify the initial activity state of all the hidden and
output units.

= We could just fix these initial states to have some default value
like 0.5.

= Butitis better to treat the initial states as learned parameters.

= We learn them in the same way as we learn the weights.
— Start off with an initial random guess for the initial states.

— At the end of each training sequence, backpropagate through
time all the way to the initial states to get the gradient of the
error function with respect to each initial state.

— Adjust the initial states by following the negative gradient.

Recurrent neural network

<

c

M= T O e <

Map input sequence of X values to corresponding sequence of
output 0 values.

Loss . measures how far each 0 is from the corresponding
training targety

Input to hidden connections parametrized by weight matrix U

Hidden-to-hidden recurrent connections parametrized by weight
matrix W

Hidden-to-output connections parametrized by weight matrix V

Forward propagation

Assume hyperbolic tangent activation function for hidden units.
Assume output is discrete. View output 0 as giving the unnormalized
log probabilities of each possible value of the discrete variable. Apply

the softmax operation as a post-processing step to obtain a vector ¥
of normalized probabilities over the output.

Forward propagation begins with a specification of the initial state
h©. Then, for each time step fromt = 1 tot = 7, where 7 is the final
step, we apply the following update equations where the parameters

>W are the bias vectors b and ¢ along with the weight matrices U, V, and
A%

<

c

M= T O e <

a®) = b + Wh'=D 4+ Ux
h"” = tanh(a'’)

o = ¢+ Vh"

$ = softmax(o)

Forward propagation

<

c

M= T O e <

This recurrent network maps an input sequence to an output
sequence of the same length. The total loss for a given sequence of X
values paired with a sequence of y values is the sum of the losses
over all the time steps. For example, if LY s the negative log-
likelihood of y® given x', ..., x®, then

L({xD,..,x?}, (y®,...,y?})

— Z L®

t
= — Z log P, g1 (y(t) | X(l), cees X(T)) Log loss
4

wherep . (y?|xD, ..., x®)is given by reading the entry for y”
from the model’s output vector)A’(Z)

Backward propagation through time

y yi=D y(t) y(+D

L LD 1O 1,0+D

1 R

0 Unfold O(t—l) O(t) O(H'l)

h >W e h¢-D E, h(t)__VS h+D (W
tu tv fu tu
X x=1) x® <(t+1)

Backward propagation through time

1=

y(t) y(t+1)
! '
LO 1,0+D
o o!+D
v 1v
h(r)_> h+D E; .

Computing the gradient of loss function L
with respect to the parameters involves
performing a forward propagation pass
moving left to right through the unrolled
graph, followed by a backward propagation
pass moving right to left through the graph.

For each node N we need to compute the

gradient VL recursively, based on the
gradient computed at nodes that follow it in
the graph. We start the recursion with the
nodes immediately preceding the final loss:

oL |
oL®

then compute V L, VyoL, Vyol, VL,
VL, VyL, VwL, VyL

Backward propagation through time

Backpropagation through time is

l $ l computationally expensive. For a single
- LO L+ weight update, need to update based on
sequence length. Multiple outputs means
T T T more of these updates taking into
o~ o™ ol+D consideration sequence length.
TV TV TV Can we do better? Truncated
h(D MAIRG Y h+D E; Backpropagation Through Time

Vanilla RNN Gradient Flow

ht — tanh(whhht_l + thXt)

) h
—?_’tanh = tanh <(Whh th)< ;_1>>
t
B
h_, > stack - h, =tanh [W

_ X,

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural
Networks, 1994 Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Vanilla RNN Gradient Flow

Backpropagation fromh,to h,_;

multiplies by W (actually WT) h, = tanh(W,,h, , + W, x)
;= hh—1 xh*t

W —'%btanh = tanh <(Whh W) (hyt(_1>>
L -1

ht—14 » stack ng ht — tanh <W < %, >>

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural
Networks, 1994 Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Vanilla RNN Gradient Flow

W tanh W tanh (V—%tanh

hO;_ stack P . stack _’ stack
A
X1 X X3

Largest singular value > 1:

Computing gradient
Exploding gradients

of h, include many
factors of W (and

L tsi I lue < 1:
repeated tanh) argest singular value

Vanishing gradients

hyz

W

.

—%tanh

— > stack

*

h,

Vanilla RNN Gradient Flow

W tanh

— stack

h04

X

Computing gradient
of h, include many
factors of W (and
repeated tanh)

-~
W tanh (V—%tanh W—%tanh
== stack 4 stack h3;:’ stack
o —1
X5 X5 X,

Gradient clipping:
— scale gradient if its
norm is too big

Largest singular value > 1:
Exploding gradients

Largest singular value < 1: grad_norm = np.sum(grad * grad)
e L . if grad_norm > threshold:
Van|Shlng gradlents grad *= (threshold / grad_norm)

h,

Vanilla RNN Gradient Flow

W tanh

h04

— stack

X

Computing gradient
of h, include many
factors of W (and
repeated tanh)

/
W —>tanh (V—%tanh W—%tanh
= stack 4 stack h,d— stack h,
1 —1
X, X X,

Largest singular value > 1:
Exploding gradients

Largest singular value < 1: Change RNN
Vanishing gradients architecture!

Recurrent Neural Networks
ISSUES

Bi-directional RNN

= One of the issues with RNN:
— Hidden variables capture only one side context

= A bi-directional structure

° e

>

>

© 0

RNN

!

LT

5

Bi-directional RNIN

For example mask out a word in sentence
and then try to predict that word. Having full
context of sentence is helpful: e.g., later
words may give context to earlier words.

The problem of exploding or vanishing gradients

What happens to the magnitude of the gradients as we backpropagate
through many layers?

— If the weights are small, the gradients shrink exponentially

— If the weights are big the gradients grow exponentially

Typical feed-forward neural nets can cope with these exponential effects
because they only have a few hidden layers

In an RNN trained on long sequences (e.g. 100 time steps) the gradients can
easily explode or vanish.
— We can avoid this by initializing the weights very carefully.

Even with good initial weights, its very hard to detect that the current target
output depends on an input from many time-steps ago.

— So RNNs have difficulty dealing with long-range dependencies.

The problem of exploding or vanishing gradients

Recurrent networks use the same matrix W at each
timestep but feedforward networks do not, so even very
deep feedforward networks can largely avoid the
vanishing and exploding gradient problem

The problem of exploding or vanishing gradients

The function composition employed by RNNs somewhat resembles matrix multiplication.
We can think of the recurrence relation

h® = WIRh¢D

as a very simple RNN lacking a nonlinear activation function and lacking inputs X. It may
be simplified to

h® = (Wt)Th(O)

and if W admits an eigendecomposition of the form W = QAQT with orthogonal Q, the
recurrence may be simplified further to

h® — QT AtQh(O)

The eigenvalues are raised to the power of 7 causing eigenvalues with magnitude less than
one to decay to zero and eigenvalues with magnitude greater than zero to explode. Any
component of h© that is not aligned with the largest eigenvalue will eventually be
discarded

The backward pass is linear

There is a big difference between the
forward and backward passes.

In the forward pass we use squashing
functions (like the logistic) to prevent the
activity vectors from exploding.

The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.

— The forward pass determines the
slope of the linear function used for
backpropagating through each
neuron.

Can we show why this is true mathematically?

Vanishing/exploding gradients

Vanishing gradients are quite prevalent and a serious issue.

Gradient can become very small or very large quickly, and the locality
assumption of gradient descent breaks down (Vanishing gradient)
[Bengio et al 1994]

A rea | exam p | e 108 Speed of learning: 4 hidden layers

— Hidden layer 1

— Training a feed-forward network — w} il . tdden ayer 3

Hidden layer 4

— y-axis: sum of the gradient norms
— Earlier layers have exponentially
smaller sum of gradient norms

— This will make training earlier

I aye rS m u C h S I Owe r' 10.60 l(l)O 2(1)0 3(1)0 4(1)0 500

Vanishing/exploding gradients

In an RNN trained on long sequences (e.g. 100 time steps) the gradients can
easily explode or vanish.

— So RNNs have difficulty dealing with long-range dependencies.

Many methods proposed for reduce the effect of vanishing gradients; although
it is still a problem

— Introduce shorter path between long connections

— Abandon stochastic gradient descent in favor of a much more
sophisticated Hessian-Free (HF) optimization

— Add fancier modules that are robust to handling long memory; e.g. Long
Short Term Memory (LSTM)

Name for doing this simplification with a
vector: g /| |g|| would just be unit
vector, so here we would get just a

One trick to handle the exploding-gradients:

— Clip gradients with bigger sizes: threshold vector below
oE threshold
Define g = —. If ||g|| > threshold then g < g
w 1]l

| |g| | is dot product /magnitude

Recurrent Neural Networks
SOME EXAMPLES

min-char-rnn.py: 112 lines of Python

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

def sample(h, seed_ix, n):
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step

wan

import numpy as np

data = open('input.txt', 'r').read() L i e pla text fil x = np.zeros((vocab_size, 1))

chars = list(set(data)) x[seed_ix] = 1

data_size, vocab_size = len(data), len(chars) ixes = []

print 'data has %d characters, %d unique.' % (data_size, vocab_size) for t in xrange(n):

char_to_ix = { ch:i for i,ch in enumerate(chars) } h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
ix_to_char = { i:ch for i,ch in enumerate(chars) } y = np.dot(why, h) + by

p = np.exp(y) / np.sum(np.exp(y))
) A i ix = np.random.choice(range(vocab_size), p=p.ravel())
hidden_size = 100 ize f hi 2n laye f r x = np.zeros((vocab_size, 1))
seq_length = 25 11 x[ix] = 1
learning_rate = le-1 - .
ixes.append(ix)
return ixes

wxh = np.random.randn(hidden_size, vocab_size)*©.01 i t to hi
whh = np.random.randn(hidden_size, hidden_size)*0.01

why = np.random.randn(vocab_size, hidden_size)*©.01

bh = np.zeros((hidden_size, 1))

n, p=9o,0
mwxh, mwhh, mwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) ariabl f -

by = np.zeros((vocab_size, 1)) smooth_loss = -np.log(1l.0/vocab_size)*seq_length
while True:
sFun(inputs, targets, hprev): € e i 1 € i
if p+seg_length+1 >= len(data) or n == @:
inputs, targets are both list of integers. hprev = np.zeros((hidden_size, 1)) t RNI
hprev is Hx1 array of initial hidden state p=0 f tart of t
returns the loss, gradients on model parameters, and last hidden state inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

wan targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

xs, hs, ys, ps = {}, {}, {3, O
hs[-1] = np.copy(hprev)

loss = @ if n % 100 == 0:
f sample_ix = sample(hprev, inputs[e], 200)

for t in xrange(len(inputs)): txt = ''.join(ix_to_char[ix] for ix in sample_ix)
xs[t] = np.zeros((vocab_size,1)) in 1-of-k 2 ntati print '----\n %s \n----' % (txt,)

xs[t][inputs[t]] = 1

hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh)
ys[t] np.dot(why, hs[t]) + by lized log liti
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
loss += -np.log(ps[t][targets[t],0]) ftmax -entropy 1

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.001
if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss) i

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[®])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1

for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):
mem += dparam * dparam

dwhy += np.dot(dy, hs[t].T) param += -learning_rate * dparam / np.sqrt(mem + 1le-8)
dby += dy

dh = np.dot(why.T, dy) + dhnext int p += seq_length Ve At int

dhraw = (1 - hs[t] * hs[t]) * dh pt jh t r earit n+=1 t t nt

dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)

B Ve SN | https://gist.github.com/karpathy

np.clip(dparam, -5, 5, out=dparam) lip t iti

| d4dee566867f8291f086

The sonnets
by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,

His tender heir might bear his memory: y
But thou, contracted to thine own bright eyes,

Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,

Thyself thy foe, to thy sweet self too cruel:

Thou that art now the world's fresh ornament,

And only herald to the gaudy spring,
Within thine own bud buriest thy content, _> R N N

And tender churl mak'st waste in niggarding:

Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee. T

When forty winters shall besiege thy brow, X

And dig deep trenches in thy beauty's field,

Thy youth's proud livery so gazed on now,

Will be a tatter'd weed of small worth held:

Then being asked, where all thy beauty lies,

Where all the treasure of thy lusty days;

To say, within thine own deep sunken eyes,

Were an all-eating shame, and thriftless praise.

How much more praise deserv'd thy beauty's use,

If thou couldst answer 'This fair child of mine

Shall sum my count, and make my old excuse,'

Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

at first' tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
" plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

at first:

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

at first' tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
" plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more

"Tmont thithey" fomesscerliund
Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

at first' tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
" plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more

"Tmont thithey" fomesscerliund
Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

QmsmpoelorySeafch Explore Gist Blog Help mlurpmhy +-L‘4.¢[}

g torvalds / linux @Watch- 3711 4 Star 23054 YFork 9,141

Linux kemel source tree

(1) 520,037 commits ¥ 1 branch 420 roleases i 5,039 contributors Code
P branch: master - linux / + = g‘mum G
Merge branch 'drm-fixes' of git:/people.freedesktop.org/~airiedlinux ««
A torvalds authored 9 hours ago latest commit 4b176927d B2 |
I Documentation Merge git//git kemel.org/pub/scmiinuxvkemel/gitinabiarget-pending 6 days ago
M arch Merge branch ‘x86-urgent-for-linus' of git//git kemel.org/pub/scmi... a day ago %m
I block block: discard bdi_unregister() in favour of bdi_destroy() 9 days ago
I crypto Merge git//git kemel.org/pub/scmiinuxkemel/githerbert/crypto-2.6 10 days ago HTTPS clone URAL
M drivers Merge branch ‘drm-fixes’ of git2/people.freedeskiop.org/~airfiedinux 9 hours ago https://github.c &
M firmware firmware/ihex2fw.c: restore missing default in switch statement 2months 890 Yoy can clone with HTTPS,
- vis: read file_handie only once in handle_to_path sdaysago SSH. or Subversion. @
I include Merge branch ‘perf-urgent-for-linus' of git//git kemel.org/publscmy/... a day ago & Clone in Desktop
M init init: fix regression by supporting devices with major:minor:offset fo... a month ago &> Download ZIP
. inn Linrnn hennnh Ynr lin int af mit it Larmal aen b b sl amal A enanthh Ama

41

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80);
if (state)
cmd = (int)(int state * (in_8(&ch->ch flags) & Cmd) ? 2 : 1); Generated
else
seal=11) C code

for (i = 0; 1 < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000ff£ff£ff£f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem_info = &of changes[PAGE_SIZE];
rek_controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, "policy ");

Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

*

*

*

*

*

*

* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

»
"
L
"
L
"

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

$include <linux/kexec.h>

$include <linux/errno.h>

$include <linux/io.h>

$#include <linux/platform_device.h>
$#include <linux/multi.h>

#include <linux/ckevent.h>

$#include <asm/io.h>

$#include <asm/prom.h>
$include <asm/e820.h>
finclude <asm/system_info.h>
$#include <asm/setew.h>
#include <asm/pgproto.h>

43

#include <asm/io.h>

#include <asm/prom.h>
$#include <asm/e820.h>
#include <asm/system_info.h>
#$include <asm/setew.h>
#include <asm/pgproto.h>

#define REG_PG vesa_slot_addr_pack
$define PFM_NOCOMP AFSR(0, load)
§define STACK _DDR(type) (func)

$#define SWAP_ALLOCATE (nr) (e)

f#define emulate_sigs() arch _get_unaligned_child()

$define access_rw(TST) asm volatile("movd %%esp, %0, %3" : : "r" (0));
if (__type & DO_READ)

static void stat_PC_SEC _ read_mostly offsetof(struct seq_argsqueue, \
pC>[1]);

static void
os_prefix(unsigned long sys)
{
§ifdef CONFIG_PREEMPT
PUT_PARAM _RAID(2, sel) = get_state_state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)-1->1lr full; low;

\

44

