
Lecture 22: Recurrent Neural Networks

COMP 411, Fall 2021

Victoria Manfredi

These	slides	are	based	on	figures	and	info	from	Andrej	Karpathy’s	blog	and	slides	created	
by	Justin	Johnson	(U	of	Michigan),	and	Geoffrey	Hinton	(U	of	Toronto)

vumanfredi@wesleyan.edu 2

Today’s	Topics

Recurrent	Neural	Networks

▪ Overview

▪ Computation	graph

▪ Language	modeling	example

OVERVIEW
Recurrent	Neural	Networks

Recurrent	Neural	Networks	

Multi-layer	feed-forward	NN:	DAG

– Just	computes	a	fixed	sequence	of	

				non-linear	learned	transformations	to	convert	an	input			

				pattern	into	an	output	pattern

Recurrent	Neural	Network:	Digraph	

– Has	cycles	

– Cycle	can	act	as	a	memory

– The	hidden	state	of	a	recurrent	net	can	carry	along		
information	about	a	“potentially”	unbounded	number	of	
previous	inputs

– They	can	model	sequential	data	in	a	much	more	natural	way

4 98

Equivalence	between	RNN	and	Feed-forward	NN

Assume	that	there	is	a	time	delay	of	1	in	using	each	connection.	
Then	the	recurrent	net	is	just	a	layered	net	that	keeps	reusing	the	
same	weights.

5

W1 W2 W3 W4

time=0

time=2

time=1

time=3

W1 W2 W3 W4

W1 W2 W3 W4

w1 w4

w2 w3

Getting	targets	when	modeling	sequences

When	applying	machine	learning	to	sequences,	we	often	want	to	turn	an	input	
sequence	into	an	output	sequence	that	lives	in	a	different	domain.

– E.	g.	turn	a	sequence	of	sound	pressures	into	a	sequence	of	word	identities.

When	there	is	no	separate	target	sequence,	we	can	get	a	teaching	signal	by	trying	
to	predict	the	next	term	in	the	input	sequence.	

– The	target	output	sequence	is	the	input	sequence	with	an	advance	of	1	step.

– This	seems	much	more	natural	than	trying	to	predict	one	pixel	in	an	image	
from	the	other	pixels,	or	one	patch	of	an	image	from	the	rest	of	the	image.

– For	temporal	sequences	there	is	a	natural	order	for	the	predictions.

Predicting	the	next	term	in	a	sequence	blurs	the	distinction	between	supervised	
and	unsupervised	learning.

– It	uses	methods	designed	for	supervised	learning,	but	it	doesn’t	require	a	
separate	teaching	signal.

6

Recurrent	neural	networks
RNNs	are	very	powerful,	because	they	combine	two	properties:

– Distributed	hidden	state	that	allows	them	to	store	a	lot	of	
information	about	the	past	efficiently

– Non-linear	dynamics	that	allows	them	to	update	their	hidden	
state	in	complicated	ways

With	enough	neurons	and	time,	RNNs	can	compute	anything	that	
can	be	computed	by	your	computer.	

7

What	the	network	learns

A	recurrent	network	can	emulate	a	finite	state	automaton,	
but	it	is	exponentially	more	powerful.	

With	N	hidden	neurons	it	has	 	possible	binary	activity	
vectors		(but	only	 	weights)

– This	is	important	when	the	input	stream	has	two	
separate	things	going	on	at	once.	

– A	finite	state	automaton	needs	to	square	its	number	
of	states.

– An	RNN	needs	to	double	its	number	of	units.

2N

N2

8

Recurrent	neural	networks
What	kinds	of	behaviour	can	RNNs	exhibit?

– They	can	oscillate.	Good	for	motor	control?

– They	can	settle	to	point	attractors.	Good	for	retrieving	

memories?

– They	can	behave	chaotically.	Bad	for	information	processing?

– RNNs	could	potentially	learn	to	implement	lots	of	small	

programs	that	each	capture	a	nugget	of	knowledge	and	run	
in	parallel,	interacting	to	produce	very	complicated	effects.

But	the	computational	power	of	RNNs	makes	them	very	hard	to	
train.

– For	many	years	we	could	not	exploit	the	computational	
power	of	RNNs	despite	some	heroic	efforts	(e.g.	Tony	
Robinson’s	speech	recognizer).

9

COMPUTATION	GRAPH
Recurrent	Neural	Networks

So	far:	“Feed-forward”	Neural	Networks

11

Arrows	represent	functions	
like	matrix	multiply

Fixed-size	
input	vector

Hidden	
vector

Fixed-size	
output	vector

So	far:	“Feed-forward”	Neural	Networks

12

one	to	one

E.g.,	Image	classification

Image	 	Label→

Recurrent	Neural	Networks:	Process	Sequences

13

one	to	one

E.g.,	Image	classification

Image	 	Label→

one	to	many

E.g.,	Image	captioning

Image	 	Sequence	of	words→

many	to	one

E.g.,	Video	classification	

Sequence	of	images	 	label→

	No	pre-specified	constraints	on	the	lengths	sequences	
because	the	recurrent	transformation	(green)	is	fixed	and	

can	be	applied	as	many	times	as	we	like

Recurrent	Neural	Networks:	Process	Sequences

14

many	to	many

E.g.,	Machine	Translation

Sequence	of	words	 	Sequence	of	words→

many	to	many

E.g.,	Per-frame	video	classification	

Sequence	of	images	 	sequence	of	labels→

Recurrent	Neural	Networks

15

y

RNN

x

Key	idea:	RNNs	have	an	“internal	
state”	that	is	updated	as	a	
sequence	is	processed

Recurrent	Neural	Networks

16

y

x

We	can	process	a	sequence	of	vectors	 	by	applying	
a	recurrence	formula	at	every	timestep	

x

ht = fW(ht−1, xt)

New	state
Some	nonlinear,	

differentiable	function	
with	parameters	W

Old	state Input	vector	at	
some	timestep

Notice	the	same	function	and	the	se	set	of	
parameters	are	used	at	every	timestep

RNN

(Vanilla)	Recurrent	Neural	Networks

17

y

x

The	state	consists	of	a	single	“hidden”	vector	h

ht = fW(ht−1, xt)

Sometimes	called	a	“Vanilla	RNN”	or	an	“Elman	
RNN”	after	Prof.	Jeffrey	Elman

ht = tanh(Whhht−1 + Wxhxt)
yt = Whyht

RNN

RNN	computational	graph

18

h0

x1

Initial	hidden	state:	either	
set	to	all	0,	or	learn	it

RNN	computational	graph

19

fW
h0

x1

h1

RNN	computational	graph

20

fW
h0

x1

h1 fW
h2

x2

RNN	computational	graph

21

fW

Re-use	the	same	weight	matrix	at	every	timestep

h0

x1

…
h1 fW
h2

x2

fW
h3
hT

x3

W

Equivalence	between	RNN	and	Feed-forward	NN

▪ Assume	that	there	is	a	time	delay	of	1	in	using	each	
connection.

▪ The	recurrent	net	is	just	a	layered	net	that	keeps	
reusing	the	same	weights.

22

Slide Credit: Geoff Hinton

1 2 3

1 2 3

1 2 3

1 2 3

W1 W2 W3 W4

time=0

time=2

time=1

time=3

W1 W2 W3 W4

W1 W2 W3 W4

1 2 3

w1 w4

w2 w3

RNN	computational	graph:	many	to	one

23

fW
h0

x1

…
h1 fW
h2

x2

fW
h3
hT

x3

W

y

RNN	computational	graph:	one	to	many

24

fW
h0

x

…
h1 fW
h2 fW
h3
hT

W

yT
y3
y2
y1

RNN	computational	graph:	many	to	many

25

fW
h0 …
h1 fW
h2 fW
h3
hT

W

yT
y3
y2
y1

x1 x2 x3

LANGUAGE	MODELING	EXAMPLE
Recurrent	Neural	Networks

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

27

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

28

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

29

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

30

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Given	“h”	predict	“e”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

31

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Given	“he”	predict	“l”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

32

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Given	“hel”	predict	“l”

Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

target	chars

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

ht = tanh(Whhht−1 + Wxhxt)

33

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

Given	“hell”	predict	“o”

Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample

Softmax

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample

Softmax

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample

Softmax

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0

Training	sequence:	“hello”

Vocabulary:	[h,	e,	l,	o]

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample

Softmax

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Example:	language	modeling
So	far:	encode	inputs	as	

one-hot-vector

1

0

0

0

w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34

1
0
0
0

=
w11
w21
w31

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample

Softmax

output	layer

hidden	layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

“e”													“l”													“l”													“o”

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Matrix	multiply	with	a	one-hot	
vector	just	extracts	a	column	
from	the	weight	matrix.	Often	
extract	this	into	a	separate	

embedding	layer

Example:	language	modeling
So	far:	encode	inputs	as	

one-hot-vector

1

0

0

0

w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34

1
0
0
0

=
w11
w21
w31

0

1

0

0

0

0

1

0

0

0

1

0

“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

output	layer

hidden	layer

Embedding	

layer

input	layer

input	chars:

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2

	0.1

	0.5	

1.9

1.1

	0.2

-1.5

-0.1	

2.2

Why

Matrix	multiply	with	a	one-hot	
vector	just	extracts	a	column	
from	the	weight	matrix.	Often	
extract	this	into	a	separate	

embedding	layer

 0.3

-0.1

 0.9

 1.0

 0.3

 0.1

 0.1

-0.5

-0.3

 1.0

 0.3

 0.1

“e”													“l”													“l”													“o”

