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Today’s	Topics

Recurrent	Neural	Networks

▪ Overview

▪ Computation	graph

▪ Language	modeling	example



OVERVIEW
Recurrent	Neural	Networks



Recurrent	Neural	Networks	

Multi-layer	feed-forward	NN:	DAG

– Just	computes	a	fixed	sequence	of	

				non-linear	learned	transformations	to	convert	an	input			

				pattern	into	an	output	pattern


Recurrent	Neural	Network:	Digraph	

– Has	cycles	

– Cycle	can	act	as	a	memory

– The	hidden	state	of	a	recurrent	net	can	carry	along		
information	about	a	“potentially”	unbounded	number	of	
previous	inputs


– They	can	model	sequential	data	in	a	much	more	natural	way
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Equivalence	between	RNN	and	Feed-forward	NN

Assume	that	there	is	a	time	delay	of	1	in	using	each	connection.	
Then	the	recurrent	net	is	just	a	layered	net	that	keeps	reusing	the	
same	weights.
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Getting	targets	when	modeling	sequences

When	applying	machine	learning	to	sequences,	we	often	want	to	turn	an	input	
sequence	into	an	output	sequence	that	lives	in	a	different	domain.


– E.	g.	turn	a	sequence	of	sound	pressures	into	a	sequence	of	word	identities.


When	there	is	no	separate	target	sequence,	we	can	get	a	teaching	signal	by	trying	
to	predict	the	next	term	in	the	input	sequence.	


– The	target	output	sequence	is	the	input	sequence	with	an	advance	of	1	step.

– This	seems	much	more	natural	than	trying	to	predict	one	pixel	in	an	image	
from	the	other	pixels,	or	one	patch	of	an	image	from	the	rest	of	the	image.


– For	temporal	sequences	there	is	a	natural	order	for	the	predictions.


Predicting	the	next	term	in	a	sequence	blurs	the	distinction	between	supervised	
and	unsupervised	learning.


– It	uses	methods	designed	for	supervised	learning,	but	it	doesn’t	require	a	
separate	teaching	signal.
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Recurrent	neural	networks
RNNs	are	very	powerful,	because	they	combine	two	properties:


– Distributed	hidden	state	that	allows	them	to	store	a	lot	of	
information	about	the	past	efficiently


– Non-linear	dynamics	that	allows	them	to	update	their	hidden	
state	in	complicated	ways


With	enough	neurons	and	time,	RNNs	can	compute	anything	that	
can	be	computed	by	your	computer.	
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What	the	network	learns

A	recurrent	network	can	emulate	a	finite	state	automaton,	
but	it	is	exponentially	more	powerful.	


With	N	hidden	neurons	it	has	 	possible	binary	activity	
vectors		(but	only	 	weights)


– This	is	important	when	the	input	stream	has	two	
separate	things	going	on	at	once.	


– A	finite	state	automaton	needs	to	square	its	number	
of	states.


– An	RNN	needs	to	double	its	number	of	units.

2N

N2
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Recurrent	neural	networks
What	kinds	of	behaviour	can	RNNs	exhibit?


– They	can	oscillate.	Good	for	motor	control?

– They	can	settle	to	point	attractors.	Good	for	retrieving	

memories?

– They	can	behave	chaotically.	Bad	for	information	processing?

– RNNs	could	potentially	learn	to	implement	lots	of	small	

programs	that	each	capture	a	nugget	of	knowledge	and	run	
in	parallel,	interacting	to	produce	very	complicated	effects.


But	the	computational	power	of	RNNs	makes	them	very	hard	to	
train.


– For	many	years	we	could	not	exploit	the	computational	
power	of	RNNs	despite	some	heroic	efforts	(e.g.	Tony	
Robinson’s	speech	recognizer).
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COMPUTATION	GRAPH
Recurrent	Neural	Networks



So	far:	“Feed-forward”	Neural	Networks
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Arrows	represent	functions	
like	matrix	multiply

Fixed-size	
input	vector


Hidden	
vector


Fixed-size	
output	vector




So	far:	“Feed-forward”	Neural	Networks
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one	to	one

E.g.,	Image	classification

Image	 	Label→



Recurrent	Neural	Networks:	Process	Sequences
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one	to	one

E.g.,	Image	classification

Image	 	Label→

one	to	many

E.g.,	Image	captioning

Image	 	Sequence	of	words→

many	to	one

E.g.,	Video	classification	

Sequence	of	images	 	label→

	No	pre-specified	constraints	on	the	lengths	sequences	
because	the	recurrent	transformation	(green)	is	fixed	and	

can	be	applied	as	many	times	as	we	like



Recurrent	Neural	Networks:	Process	Sequences
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many	to	many

E.g.,	Machine	Translation

Sequence	of	words	 	Sequence	of	words→

many	to	many

E.g.,	Per-frame	video	classification	

Sequence	of	images	 	sequence	of	labels→



Recurrent	Neural	Networks
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y

RNN

x

Key	idea:	RNNs	have	an	“internal	
state”	that	is	updated	as	a	
sequence	is	processed



Recurrent	Neural	Networks
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y

x

We	can	process	a	sequence	of	vectors	 	by	applying	
a	recurrence	formula	at	every	timestep	

x

ht = fW(ht−1, xt)

New	state
Some	nonlinear,	

differentiable	function	
with	parameters	W

Old	state Input	vector	at	
some	timestep

Notice	the	same	function	and	the	se	set	of	
parameters	are	used	at	every	timestep

RNN



(Vanilla)	Recurrent	Neural	Networks
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y

x

The	state	consists	of	a	single	“hidden”	vector	h

ht = fW(ht−1, xt)

Sometimes	called	a	“Vanilla	RNN”	or	an	“Elman	
RNN”	after	Prof.	Jeffrey	Elman

ht = tanh(Whhht−1 + Wxhxt)
yt = Whyht

RNN



RNN	computational	graph

18


h0

x1

Initial	hidden	state:	either	
set	to	all	0,	or	learn	it



RNN	computational	graph

19

fW
h0

x1


h1



RNN	computational	graph
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RNN	computational	graph
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fW

Re-use	the	same	weight	matrix	at	every	timestep


h0

x1

…
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Equivalence	between	RNN	and	Feed-forward	NN

▪ Assume	that	there	is	a	time	delay	of	1	in	using	each	
connection.


▪ The	recurrent	net	is	just	a	layered	net	that	keeps	
reusing	the	same	weights.
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RNN	computational	graph:	many	to	one
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RNN	computational	graph:	one	to	many
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RNN	computational	graph:	many	to	many
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LANGUAGE	MODELING	EXAMPLE
Recurrent	Neural	Networks



Example:	language	modeling
Given	characters	1,	2,	…,	t,	
model	predicts	character	t
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Example:	language	modeling
At	test	time,	generate	new	text:	
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time,	feed	back	to	model

1

0

0

0


Training	sequence:	“hello”


Vocabulary:	[h,	e,	l,	o]

0

1

0

0


0

0

1

0


0

0

1

0


“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample


Softmax


output	layer


hidden	layer


input	layer


input	chars:

 1.0

 0.3

 0.1

  0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2


	0.1

	0.5	

1.9

1.1


	0.2

-1.5

-0.1	

2.2


Why

“e”													“l”													“l”													“o”

.03


.13


.00


.84

.25


.20


.05


.50

.11


.17


.68


.03

.11


.02


.08


.79



Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0


Training	sequence:	“hello”


Vocabulary:	[h,	e,	l,	o]

0

1

0

0


0

0

1

0


0

0

1

0


“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample


Softmax


output	layer


hidden	layer


input	layer


input	chars:

 1.0

 0.3

 0.1

  0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2


	0.1

	0.5	

1.9

1.1


	0.2

-1.5

-0.1	

2.2


Why

“e”													“l”													“l”													“o”

.03


.13


.00


.84

.25


.20


.05


.50

.11


.17


.68


.03

.11


.02


.08


.79



Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0


Training	sequence:	“hello”


Vocabulary:	[h,	e,	l,	o]

0

1

0

0


0

0

1

0


0

0

1

0


“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample


Softmax


output	layer


hidden	layer


input	layer


input	chars:

 1.0

 0.3

 0.1

  0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2


	0.1

	0.5	

1.9

1.1


	0.2

-1.5

-0.1	

2.2


Why

“e”													“l”													“l”													“o”

.03


.13


.00


.84

.25


.20


.05


.50

.11


.17


.68


.03

.11


.02


.08


.79



Example:	language	modeling
At	test	time,	generate	new	text:	
sample	characters	one	at	a	
time,	feed	back	to	model

1

0

0

0


Training	sequence:	“hello”


Vocabulary:	[h,	e,	l,	o]

0

1

0

0


0

0

1

0


0

0

1

0


“h”													“e”													“l”													“l”

 0.3

-0.1

 0.9

Wxh

Sample


Softmax


output	layer


hidden	layer


input	layer


input	chars:

 1.0

 0.3

 0.1

  0.1

-0.5

-0.3

 1.0

 0.3

 0.1

Whh

	1.0	

	2.2

-3.0

	4.1

	0.5

	0.3	

-1.0

1.2


	0.1

	0.5	

1.9

1.1


	0.2

-1.5

-0.1	

2.2


Why

“e”													“l”													“l”													“o”

.03


.13


.00


.84

.25


.20


.05


.50

.11


.17


.68


.03

.11


.02


.08


.79



Example:	language	modeling
So	far:	encode	inputs	as	


one-hot-vector
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Matrix	multiply	with	a	one-hot	
vector	just	extracts	a	column	
from	the	weight	matrix.	Often	
extract	this	into	a	separate	

embedding	layer
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