
Lecture 19: Practical Concerns for
Training Neural Networks

COMP 411, Fall 2021
Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	slides	created	by	
Vivek	Srikumar	(Utah),	Dan	Roth	(Penn),	and	Russ	Grenier	(U	of	Alberta)	and	

content	from	the	book	“Machine	Learning”	by	Tom	Mitchell

vumanfredi@wesleyan.edu

Today’s	Topics

Training	a	neural	network	
▪ Initializing	weights	
▪ Data	normalization	
▪ Issues	with	stochastic	gradient	descent	
▪ Preventing	overfitting

INITIALIZING	WEIGHTS
Training

Initializing	weights
Initialize	weights	randomly,	but	close	to	zero	

Give	random	number	generator	same	random	seed	during	
debugging,	to	ensure	you	get	the	same	output	

Once	debugging	done:	set	random	seed	randomly,	such	as	a		
function	of	current	time

4

DATA	NORMALIZATION
Training

Data	normalization
Noise	in	large-valued	features	can	be	more	than	size	of	small-valued	
features!	

Normalization	
‣ Typically	normalize	so	between	-1	and	1	or	0	and	1	
‣ May	just	normalize	features	by	max-min	
‣ Or	may	normalize	based	on	distribution	of	features	
‣ e.g.,	many	features	in	one	range	of	values	but	few	in	
another	range

6

LEARNING	AS	LOSS	MINIMIZATION
Training

Learning	as	loss	minimization
The	setup	

▪ Examples	 	drawn	from	a	fixed,	unknown	distribution	 	
▪ Hidden	oracle	classifier	 	labels	examples	
▪ We	wish	to	find	a	hypothesis	 	that	mimics	 	

x D
f

h f

8

Learning	as	loss	minimization
The	setup	

▪ Examples	 	drawn	from	a	fixed,	unknown	distribution	 	
▪ Hidden	oracle	classifier	 	labels	examples	
▪ We	wish	to	find	a	hypothesis	 	that	mimics	 	

The	ideal	situation	
▪ Define	a	function	 	that	penalizes	bad	hypotheses	
▪ Learning:	pick	a	function	 	to	minimize	expected	loss	

	

Instead,	minimize	empirical	loss	on	the	training	set	

	

x D
f

h f

L
h ∈ H

min
h∈H

E[x∼D][L(h(x), f(x))]

min
h∈H

1
m ∑

i

L(h(xi), f(xi))]

9

But	distribution	 	is	unknownD

Empirical	loss	minimization

Learning	=	minimize	empirical	loss	on	the	training	set	

	

We	need	something	that	biases	the	learner	towards	
simpler	hypotheses	

▪ Achieved	using	a	regularizer,	which	penalizes	complex	
hypotheses	

min
h∈H

1
m ∑

i

L(h(xi), f(xi))]

10

Is	there	a	problem	here?	Overfitting!

Regularized	loss	minimization

Learning:	

	

With	linear	classifiers:	

	

What	is	a	loss	function?	
▪ Loss	functions	should	penalize	mistakes	
▪ We	are	minimizing	average	loss	over	the	training	data	

What	is	the	ideal	loss	function	for	classification?

min
h∈H (regularizer(h) + C

1
m ∑

i

L(h(xi), f(xi)))

min
w

wTw +
C
m ∑

i

L(yi, xi, w)

11

The	0-1	loss
Penalize	classification	mistakes	between	true	label	 	and	prediction	 		

	

For	linear	classifiers,	the	prediction	 	
▪ Mistake	if	 	

	

y y′

L0−1(y, y′) = {1 if y ≠ y′

0 if y = y′

y′ = sgn(wTx)
ywTx ≤ 0

L0−1(y, y′) = {1 if ywTx ≤ 0
0 otherwise

12

Minimizing	0-1	loss	is	intractable.	Need	surrogates

Learning	via	loss	minimization

▪ Write	down	a	loss	function,	minimize	empirical	loss	

▪ Regularize	to	avoid	overfitting	
– Neural	networks	use	other	strategies	such	as	dropout	

▪ Widely	applicable,	different	loss	functions	and	
regularizers	

13

ISSUES	WITH	STOCHASTIC	
GRADIENT	DESCENT

Training

15

Comments	on	Training	
No	guarantee	of	convergence;	may	oscillate	or	reach	a	local	minima.	

In	practice,	many	large	networks	are	trained	on	large	amounts	of	data	for	
realistic	problems.	

Many	epochs	(tens	of	thousands)	may	be	needed	for	adequate	training.	
Large	data	sets	may	require	many	hours/days/weeks	of	CPU	or	GPU	time,	
sometimes	specialized	hardware	even	

Termination	criteria:	Number	of	epochs;		Threshold	on	training	set	error;	No	
decrease	in	error;	Increased	error	on	a	validation	set.	

To	avoid	local	minima:	several	trials	with	different	random	initial	weights	
with	majority	or	voting	techniques

16

Minibatches
Stochastic	gradient	descent	

‣ Take	a	random	example	at	each	step	
‣ Write	down	the	loss	function	with	that	example	
‣ Compute	gradient	of	this	loss	and	take	a	step	

Stochastic	gradient	descent	with	minibatches	
‣ Collect	a	small	number	of	random	examples	(the	minibatch)	at	each	step	
‣ Write	down	the	loss	function	with	that	example	
‣ Compute	gradient	of	this	loss	and	take	a	step	

New	hyperparameter:	size	of	the	mini	batch	
‣ Often	governs	how	fast	learning	converges	
‣ Hardware	considerations	around	memory	can	dictate	size	of	minibatch

Why	should	we	take	only	one	random	example	at	each	step?

17

Gradient	tricks
Simple	gradient	descent	updates	the	parameters	using	the	gradient	of	one	
example	(or	a	mini	batch	of	them),	denoted	by	 	gi

parameters ← parameters−ηgi

Gradients	could	change	much	faster	in	one	direction	than	another	
When	gradients	change	very	fast,	this	can	make	learning	slow,	or	worse,	unstable.	
Quality	of	model	can	change	drastically	based	on	how	many	epoch	you	run	

Each	pink	link	line	is	gradient	

18

Gradient	tricks
Simple	gradient	descent	updates	the	parameters	using	the	gradient	of	one	
example	(or	a	mini	batch	of	them),	denoted	by	 	gi

parameters ← parameters−ηgi

Gradients	could	change	much	faster	in	one	direction	than	another	
When	gradients	change	very	fast,	this	can	make	learning	slow,	or	worse,	unstable.	
Quality	of	model	can	change	drastically	based	on	how	many	epoch	you	run	

Each	pink	link	line	is	gradient	

19

Gradient	tricks
Simple	gradient	descent	updates	the	parameters	using	the	gradient	of	one	
example	(or	a	mini	batch	of	them),	denoted	by	 	gi

parameters ← parameters−ηgi

Gradients	could	change	much	faster	in	one	direction	than	another	
When	gradients	change	very	fast,	this	can	make	learning	slow,	or	worse,	unstable.	
Quality	of	model	can	change	drastically	based	on	how	many	epoch	you	run	

Each	pink	link	line	is	gradient	

20

Gradient	tricks
Simple	gradient	descent	updates	the	parameters	using	the	gradient	of	one	
example	(or	a	mini	batch	of	them),	denoted	by	 	gi

parameters ← parameters−ηgi

Gradients	could	change	much	faster	in	one	direction	than	another	
When	gradients	change	very	fast,	this	can	make	learning	slow,	or	worse,	unstable.	
Quality	of	model	can	change	drastically	based	on	how	many	epoch	you	run	

Each	pink	link	line	is	gradient	

21

Gradient	tricks:	momentum
Momentum	smooths	out	updates	by	using	a	weighted	average	of	all	
previous	gradients	at	each	step	

Instead	of	updating	with	the	gradient	(),	use	a	moving	average	of	gradients	
()	to	update	the	model	parameters.	In	the	inner	loop:	

	
	

The	hyperparameter	 	controls	how	much	of	the	previous	update	should	be	
retained.	Typical	value	 	

gi
vt

vt ← μvt − 1 + ηtgi

parameters ← parameters−vt

μ
μ = 0.9

Update	is	average	of	
previous	update	and	

gradient

22

Gradient	tricks:	AdaGrad,	RMSProp,	Adam
AdaGrad.	Each	parameter	has	its	own	learning	rate.	If	 	is	the	gradient	for	the	 th	
parameter	at	step	 ,	then	

	

	

RMSProp.	Similar	to	AdaGrad	but	more	recent	gradients	are	weighted	more	in	the	
denominator	

																																					 	

Adam.	A	combination	of	many	ideas:		
‣ Momentum	to	smooth	gradients	
‣ RMSProp	like	approach	for	adaptively	choosing	learning	rate	with	more	recent	
gradients	being	weighted	higher	

‣ Additional	terms	to	avoid	bias	introduced	during	early	gradient	estimates	
‣ Currently	the	most	commonly	used	variant	of	gradient	based	learning

g2
i,t i

t
ci ← ci + g2

i,t

parametersi ← parametersi −
η

α + ci
gi,t

ci ← δci + (1 − δ)g2
i,t

OVERFITTING	PREVENTION
Training	a	Neural	Network

24

Over-fitting	prevention:	validation	set	
Running	too	many	epochs	may	over-train	the	network	and	result	in	over-
fitting	(improved	result	on	training,	decrease	in	performance	on	test	set)		

Keep	an	hold-out	validation	set	and	test	accuracy	after	every	epoch	

Maintain	weights	for	best	performing	network	on	the	validation	set	and	
return	it	when	performance	decreases	significantly	beyond	that.	

To	avoid	losing	training	data	to	validation:	
– Use	10-fold	cross-validation	to	determine	the	average	number	of	epochs	
that	optimizes	validation	performance	

– Train	on	full	data	set	using	this	many	epochs	to	produce	final	results

25

Over-fitting	prevention:	hidden	units	

Too	few	hidden	units	prevent	the	system	from	adequately	
fitting	the	data	and	learning	the	concept	

Using	too	many	hidden	units	leads	to	over-fitting	

Cross-validation	or	performance	on	a	held	out	set	can	be	
used	to	determine	an	appropriate	number	of	hidden	units	

26

Over-fitting	prevention:	dropout	training

During	training,	for	each	step,	decide	whether	to	delete	a	
hidden	unit	with	some	probability	 	

– That	is,	make	predictions	using	only	a	randomly	chosen	set	of	
neurons	

– Update	only	these	neurons	

Tends	to	avoid	overfitting	

Has	a	model	averaging	effect	
– Only	some	parameters	get	trained	at	any	step

p

Proposed by (Hinton et al, 2012)

27

Over-fitting	prevention:	dropout	training

Dropout	of	50%	of	the	hidden	units	and	20%	of	the	input	units	
(Hinton	et	al,	2012)

28

Over-fitting	prevention:	dropout	training

Model	averaging	effect		
– Among	 	models,	with	shared	parameters		

• :	number	of	units	in	the	network		
– Only	a	few	get	trained		
– Much	stronger	than	the	known	regularizer		

What	about	the	input	space?	
– Do	the	same	thing!	

2H

H

29

Over-fitting	prevention:	weight-decay

All	weights	are	multiplied	by	some	fraction	in	(0,1)	after	
every	epoch	

– Encourages	smaller	weights	and	less	complex	hypothesis	
– Equivalently:	change	Error	function	to	include	a	term	for	the	
sum	of	squares	of	weights	in	network

PRACTICAL	TIPS
Training	a	Neural	Network

31

Input-Output	Coding
▪ Appropriate	coding	of	inputs	and	outputs	can	make	learning	

problem	easier	and	improve	generalization	

▪ Encode	each	binary	feature	as	a	separate	input	unit	

▪ For	multi-valued	features	include	one	binary	unit	per	value	rather	
than	trying	to	encode	input	information	in	fewer	units	
– Very	common	today	to	use	distributed	representation	of	the	input	–	real	
valued,	dense	representation	

▪ For	disjoint	categorization	problem,	best	to	have	one	output	unit	
for	each	category	rather	than	encoding	 	categories	into	 	bits	N log N

32

Representational	Power	
Backpropagation	version	presented	is	for	networks	with	one	hidden	layer	

But:	
▪ Any	Boolean	function	can	be	represented	by	a	two	layer	network	

(simulate	a	two	layer	AND-OR	network)	
▪ Any	bounded	continuous	function	can	be	approximated	with	arbitrary	

small	error	by	a	two	layer	network	
▪ Sigmoid	functions	provide	a	set	of	basis	function	from	which	arbitrary	

function	can	be	composed	
▪ Any	function	can	be	approximated	to	arbitrary	accuracy	by	a	three	

layer	network

33

Hidden	Layer	Representation	
▪ Weight	tuning	procedure	sets	weights	that	define	whatever	

hidden	units	representation	is	most	effective	at	minimizing	
the	error	

▪ Sometimes	Backpropagation	will	define	new	hidden	layer	
features	that	are	not	explicit	in	the	input	representation,	but	
which	capture	properties	of	the	input	instances	that	are	
most	relevant	to	learning	the	target	function	

▪ Trained	hidden	units	can	be	seen	as	newly	constructed	
features	that	re-represent	the	examples	so	that	they	are	
linearly	separable

34

Gradient	checks	are	useful!	

Allow	you	to	know	that	there	are	no	bugs	in	your	neural	
network	implementation!		

– Implement	your	gradient		

– Implement	a	finite	difference	computation	by	looping	through	
the	parameters	of	your	network,	adding	and	subtracting	a	
small	epsilon	()	and	estimate	derivatives		

				 	

– Compare	the	two	and	make	sure	they	are	almost	the	same	

∼ 10−4

𝑓′ (𝜃) ≈
𝑓(𝜃+) − 𝑓(𝜃−)

2𝜖
𝜃± = 𝜃 ± 𝜖

68

Vanishing/exploding	gradients	

Vanishing	gradients	are	quite	
prevalent	and	a	serious	issue		

A	real	example		
‣ Training	a	feed-forward	network		
‣ y-axis:	sum	of	the	gradient	norms	
‣ Earlier	layers	have	exponentially	

smaller	sum	of	gradient	norms	
‣ This	will	make	training	earlier	

layers	much	slower	

35

Gradient	can	become	very	small	or	very	large	quickly,	and	the	locality	
assumption	of	gradient	descent	breaks	down	(Vanishing	gradient)	

[Bengio	et	al	1994]

vumanfredi@wesleyan.edu 36

Why	backpropagation	tends	to	work?

Only	guaranteed	to	converge		
‣ eventually	
‣ to	a	local	optimum	

Why	does	it	work	so	well	in	practice?	
‣ At	start	 ,	network	 	linear	weights,	so	

moves	quickly…	until	in	“correct	region”
w/wij ≈ 0 ≈

vumanfredi@wesleyan.edu 37

Efficiency

Number	of	iterations:	very	important!	
‣ If	too	small:	higher	error	
‣ if	too	large:	overfitting	 	high	general	error	

Learning:	intractable	in	general	
‣ Training	can	take	thousands	of	iterations:	slow!	
‣ Learning	net	with	single	hidden	unit	is	NP-hard	
‣ In	practice:	backpropagation	is	very	useful	

Use:	Using	network	(after	training)	is	very	fast

⟹

MOTIVATION
Why	deep	neural	networks?

Why	deep	neural	networks?

Universality		
▪ In	principle	can	approximate	an	arbitrary	function	

using	just	a	single	hidden	layer.		

Why	should	we	use	neural	networks	with	many	layers?	
▪ Well-adapted	to	learning	hierarchies	of	knowledge:	

pixel	 	shape	 	object	 	multiple	objects	 	scene	→ → → →

39

SUMMARY
Neural	Networks

What	we	saw

What	is	a	neural	network	
Multiple	layers:		

▪ inner	layers	learn	a	representation	of	the	data	
Highly	expressive	

▪ Neural	networks	can	learn	arbitrarily	complex	functions	
▪ Is	this	always	a	good	thing?	Overfitting?	
▪ Can	be	challenging	to	learn	the	parameters	as	multiple	

optima.	Many	tricks	to	make	gradient	descent	work	

Training	neural	networks	
▪ Backpropagation

41

What	we	did	not	see
Vast	area,	fast	moving	

▪ Many	new	algorithms	and	tricks	for	learning	that	tweak	on	the	basic	
gradient	method	

Some	named	neural	networks	
▪ Restricted	Boltzmann	machines	and	auto	encoders:	learn	a	latent	

representation	of	the	data	
▪ Convolutional	neural	network:	modeled	after	the	mammalian	visual	

cortex,	currently	the	state	of	the	art	for	object	recognition	tasks	
▪ Recurrent	neural	networks	and	transformers:	encode	and	predict	

sequences:	we	will	look	at	in	a	few	weeks!	
▪ Attention:	use	a	neural	network	to	decide	what	parts	of	a	set	of	

features	are	relevant	and	create	an	aggregate	“attended”	
representation	

▪ …	and	many	more
42

