Lecture 18: Training a Neural Network

COMP 411, Fall 2021
Victoria Manfredi

Acknowledgements: These slides are based primarily on slides created by
Vivek Srikumar (Utah), Dan Roth (Penn), Sergey Levine (UC Berkeley), content
from the book “Machine Learning” by Tom Mitchell and content from the book
“Neural Networks and Deep Learning” by Michael Nielsen

Today’s Topics

Training a neural network
Backpropagation

Training a Neural Network
MOTIVATION

Training a neural network

Given
= A network architecture
= layout of neurons, neuron connectivity, and neuron activations
= A dataset of labeled examples

= S={pw)

Goal

» Learn the weights of the neural network

Remember

= For a fixed architecture, a neural network is a function parameterized by its
weights

= Prediction: y = NN(x, W)

Back to our running example

Given an input X, how is the output predicted?

output

y =0y, +wl 71+ w3 ,%)
— ~(wh h h
2 = 6(Wy, + WX + Wy ,X))

— h h h

Back to our running example

Given an input X, how is the output predicted?

output

—_ o o o
— h h h

2 = 6(Wy, + WX + Wy ,X))
— h h h

Suppose the true label for this example
is a number y;

We can write the square loss for this
example as:

L=2(y—)
—2)’ Vi

The derivative of the loss function?
VL(NN(X,, W),)

If the neural network is a differentiable function, we can find the
gradient

> Or maybe its sub-gradient (to minimize non-differentiable function)
> This is decided by the activation functions and the loss function

Easy if only one layer. But how do find the sub-gradient of a more
complex function?

> E.g., 150 layer neural network for image classification!

We need an efficient algorithm:
Backpropagation

Checkpoint

If we have neural network (structure, activations, and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Some simple expressions

fG,y)=x+y

fGx,y) =xy

J(x,y) = max(x, y)

0f_
ox

af_
dy_

af_
ox

8f_
ox

1

1

Y

X

Useful to keep in mind what these derivatives
represent in these (and all other) cases:

of

0x
Represents the rate of change of the function f
with respect to a small change in x

of . .
— =1, ifx > y, 0 otherwise

0x

af

— =1, ify > x, 0 otherwise

dy

More complicated cases?

f(x,9,2) = x(y* + 2)

This is still simple enough to manually take derivatives, but let us work
through this in a slightly different way

Break down the function in terms of simple forms

g=y+7z
Jf=xg
dg dg Jdf 0
Each of these is a simple form. We know how to compute g, g’ f, f
dy 0z 0Ox 0g

Key idea: build up derivatives of compound expressions by breaking it
down into simpler pieces, and applying the chain rule

of of og
dy _Gg’ay

=Xx-2y =2xy

In terms of “computation graphs”
[, y,2) = x(y* + 2)

The forward pass: 15 f Computes xg = x(y2 + 2)

computes function
values for specific inputs

5 g Computes y? + z

In terms of “computation graphs”

f(x,9,2) = x(y* + 2)

_ 2
The backward pass: 15 f Computes xg = x(y“ + 2)
computes derivatives of . Vel
each intermediate node _f =g=5
ox
ﬁ3 5 & Computes y2 + 2

In terms of “computation graphs”

f(x,9,2) = x(y* + 2)

_ 2
The backward pass: 15 f Computes xg = x(y“ + 2)
computes derivatives of . Vol .
each intermediate node _f =g=5 _f —x =3
ox 0g
‘3 5 & Computes y2 + 2

In terms of “computation graphs”

f(x,9,2) = x(y* + 2)

_ 2
The backward pass: 15 f Computes xg = x(y“ + 2)
computes derivatives of . Vol .
each intermediate node _f =g=5 _f —x =3
ox 0g
‘3 5 & Computes y2 + 2
ad
T _T % soxa=12
dy 0dg 0y

n/z 1

In terms of “computation graphs”

The backward pass:
computes derivatives of
each intermediate node

f(x,9,2) = x(y* + 2)

15 f Computes xg = x(y2 +2)
N

d_f_ = a—f=x=3
ax_g_ 0g
N
‘3 5 & Computes y* + 7
£ N,
V_Y % _3uox2=12 Y _U % 313
ay ag ay 0z 6g 07

't 1

The abstraction

Each node in the graph knows 2 things:

1. How to compute the value of a function with respect to
its inputs (forward)

2. How to compute the partial derivative of the output with
respects to its inputs (backward)

These can be defined independently of what happens in the rest
of the graph

We can build up complicated functions using simple nodes and
compute values and partial derivatives of these as well

In terms of “computation graphs”

f(x,9,2) = x(y* + 2)

Meaning of the partial 15 f Computes xg = x(y2 + 2)

derivatives: how sensitive e

: of of

is the value of fto the — =g=5 a—=x=3

value of each variable ox & \
‘3 5 & Computes y2 + 2

/' \

0 0 o o
f=af-ag=3><2><2=12 —f=—f-—g=3><1—3
dy dg 0y 0z 0g 0z

't 1

A notational convenience

Commonly nodes in the network represent not only single numbers (e.g., features,
outputs) but also vectors (an array of numbers), matrices (a 2d array of numbers)
or tensors (an n-dimensional array of numbers)

output

A notational convenience

Commonly nodes in the network represent not only single numbers (e.g., features,
outputs) but also vectors (an array of numbers), matrices (a 2d array of numbers)

or tensors (an n-dimensional array of numbers)

output

Each element of Z is z;
and is generated by the
sigmoid activation to
each element of W/x

@ 7z = 6(W"x)

h h h
Wi — Wo,r Wi W2
|k h h

Woo Wia2 Wano

@ Represents [x, X, X5]

A notational convenience

Commonly nodes in the network represent not only single numbers (e.g., features,
outputs) but also vectors (an array of numbers), matrices (a 2d array of numbers)
or tensors (an n-dimensional array of numbers)

No activation because the
output is defined to be linear

output

y = WX

We=|wi; wip wy

z = 6(W'x)
h h h
Wi — Wo,r Wi W2
_ h h h
Woo Wia2 Wano

@ Represents [x, X, X5]

Reminder: chain rule of derivatives

If y is a function of z and z is a function of X then y is a function of x as well

dy
How to find —?
0X

dy dy 0z
X 0z O0x

Reminder: chain rule of derivatives

If y is a function of z and z is a function of X then y is a function of x as well

dy
How to find —?
0X

dy 09y 0z N dy 0%
a @ OX 0z O0x 0z OX

Reminder: chain rule of derivatives

If y is a function of z and z is a function of X then y is a function of x as well

dy
How to find —?
0X

® OO 32
7). izldz,- 7).

Training a neural network
BACKPROPAGATION

Backpropagation (of errors)
L= %(y — y*)?

output

y =0y, +wl iz + w3 ,2)
— h h h

_ h h h
21 = oWy | + w1 X; +wy Xy)

oL oL
We want to compute and —
ows, dwg

Important: L is a differentiable function
of all of the weights

Applying the chain rule to compete the gradient
(and remembering partial computations along
the way to speed up learning)

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

oL
6wg’ |

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

oL

[0
6w1’1

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

L=2(y—yo?
2

Backpropagation: output layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output

Backpropagation: output layer

output

L=2(y—yo?
2

y = a(w&1 + wlo’lzl + wzo’lzz)

We have already computed this
partial derivative for the previous
case. Cache to speed up!

Backpropagation: hidden layer

L= l(y — y¥)?
2

output

—_— o o o
— h h h
— h h h
21 = oWy + Wi (X + Wy Xy)

oL

h
ows,

We want to compute

L=2(y—yo?
2

Backpropagation: hidden layer

y = a(w&1 + wlo’lzl + wzo’lzz)

output
oL AL dy
ows, B dy . owl,
aL 0 0 0
= 5 : ol Woq + W 121 + Wy 120)
oL \0 9
= dy (Wl,lﬁvgzl + Wz,lwzz)
0

Zy is not a function of w2)

1 2
Backpropagation: hidden layer F=g07

y =o(wy; + w2+ w;)%)

output
oL oL 9y
ows "oy owl,
aL 0 0 0
B ady | awgz(WO,l Wizt 2)
oL 02,

L=2(y—yo?
2

Backpropagation: hidden layer

— s(wh h h
2y = o(Wy, + Wi'hX) + Wy HX))

output
oL oL dy
ows, B dy . owl,
aL 0 0 0
= 5 : awélz(wo’l + w12 + w3 12)
oL 02,

1 2
Backpropagation: hidden layer F=g07

ok h h
Zy = 6(Wy + Wy pX; + Wy 5x)

N

s
output
oL oL dy
dwél’z B dy awﬁz

oL

- ' (Wo 1 + W 121 + W3 12)
dy ows, = ’ :

_OL . %

=
dy 21 o dwél,z

Each of these partial derivatives is easy!

1 2
Backpropagation: hidden layer F=g07

ok h h
Zy = 6(Wy + Wy pX; + Wy 5x)

\)

output

1 2
Backpropagation: hidden layer F=g07

ok h h
Zy = 6(Wy + Wy pX; + Wy 5x)

output

Because 7,(s) is the logistic
function we have already seen

1 2
Backpropagation: hidden layer F=g07

ok h h
Zy = 6(Wy + Wy pX; + Wy 5x)

output

Because 7,(s) is the logistic
function we have already seen

1 2
Backpropagation: hidden layer F=g07

— s(wh h h
2y = oWy, + wi'hX) + wy X))

)
output
oL oL 0z, O0s
= ‘W
owl, dy 21 os owl,
oL \
5 =) y* ¥ __ ,
Y 6) owl
—_— = Zz(l — Zz)
ds

Because 7,(s) is the logistic
function we have already seen

Importantly: we have already computed many of these partial derivatives
because we are proceeding from top to bottom (i.e., backwards)

Backpropagation algorithm

The same algorithm works for multiple layers and more
complicated architectures

Repeated application of the chain rule for partial derivatives
> First perform forward pass from inputs to the output
> Compute loss

> From loss, proceed backwards to compute partial
derivatives using chain rule

> Cache partial derivatives as you compute them to use
for lower layers

Mechanizing learning

Backpropagation gives you the gradient that will be used for gradient
descent

> SGD gives us a generic learning algorithm

> Backpropagation is a generic method for computing partial
derivatives

A recursive algorithm that proceeds from top of neural network to
bottom

Modern neural network libraries implement automatic differentiation
using back propagation

> Allows easy exploration of network architectures
> Don’t have to keep deriving the gradients by hand each time

Stochastic gradient descent min 3 LINN(x; W),

Given a training set S = {(x;,y,)},x € RY The objective is not convex
Initialization can be important

1. Initialize parameters w
2. Forepoch =1...T:
> Shuffle the training set
> For each training example (X;, ;) € S:
= Treat this example as the entire dataset
Compute the gradient of the loss VL(NN(X;, W), y;) using
backpropagation

= Update W «— w — }’IVL(NN(XZ-, w),)’i) Y;: learning r.ate, many
tweaks possible

Return w

