
Lecture 17: Optimization

COMP 411, Fall 2021 
Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	slides	created	by	
Vivek	Srikumar	(Utah),	Dan	Roth	(Penn),	Sergey	Levine	(UC	Berkeley),	and	

content	from	the	book	“Machine	Learning”	by	Tom	Mitchell



vumanfredi@wesleyan.edu

Today’s	Topics

Training	a	neural	network	
▪ Motivation	
▪ Notation	
▪ Backpropagation



MOTIVATION
Training	a	Neural	Network



Training	a	neural	network
Given	

▪ A	network	architecture		
▪ layout	of	neurons,	neuron	connectivity,	and	neuron	activations	

▪ A	dataset	of	labeled	examples	
▪ 	

Goal	
▪ Learn	the	weights	of	the	neural	network	

Remember	
▪ For	a	fixed	architecture,	a	neural	network	is	a	function	parameterized	by	its	

weights	
▪ Prediction:	 	

S = {(xi, yi)}

y = NN(x, w)

4vumanfredi@wesleyan.edu



vumanfredi@wesleyan.edu 5

Back	to	our	running	example

Given	an	input	 ,	how	is	the	output	predicted?x

	

	

	

y = σ(wo
0,1 + wo

1,1z1 + wo
2,1z2)

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

Given	an	input	 ,	how	is	the	output	predicted?x

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y



vumanfredi@wesleyan.edu 6

Back	to	our	running	example

Given	an	input	 ,	how	is	the	output	predicted?x

	

	

	

y = σ(wo
0,1 + wo

1,1z1 + wo
2,1z2)

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

Suppose	the	true	label	for	this	example	
is	a	number	 	

We	can	write	the	square	loss	for	this	
example	as:	

	

yi

L =
1
2

(y − yi)2

Given	an	input	 ,	how	is	the	output	predicted?x

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y



Recall:	Learning	as	loss	minimization

We	have	a	classifier	 	that	is	completely	defined	by	its	
weights.	Learn	the	weights	by	minimizing	a	loss	 	

	

How	do	we	solve	the	optimization	problem?

NN
L

min
w ∑

i

L(NN(xi, w), yi)

7vumanfredi@wesleyan.edu



Recall:	Learning	as	loss	minimization

We	have	a	classifier	 	that	is	completely	defined	by	its	
weights.	Learn	the	weights	by	minimizing	a	loss	 	

	

Saw	that	this	strategy	worked	for	perceptron	and	LMS	
regression:	each	minimizes	a	different	loss	function.	

Same	idea	for	non-linear	models	too!

NN
L

min
w ∑

i

L(NN(xi, w), yi)

8vumanfredi@wesleyan.edu



Gradient	descent
An	algorithm:	

1. Find	a	direction	 	where	 	decreases	
2. 	

	Goal	is	to	minimize	 .	Which	way	does	 	decrease?	

v L(w)
w ← w + αv

L(w) L(w)

9vumanfredi@wesleyan.edu

Negative	slope	/	decreasing	=	want	to	go	to	right	
Positive	slope	/	increasing	=	want	to	go	to	left	

In	general:	for	each	dimension,	go	in	the	direction	
opposite	the	slope	along	that	dimension	

						 				…v1 = −
dL(w)
dw1

v1 = −
dL(w)
dw2

				∇wL(w) =

dL(w)
dw1

⋮
dL(w)
dwn

wt
1

wt+1
1 w1

L(w1)



Gradient	descent
▪ Measures	the	local	gradient	of	the	error	(cost)	function	with	

respect	to	the	parameter	vector	w	and	it	goes	in	the	direction	of	
decreasing	gradient.	Once	the	gradient	is	zero,	you	have	reached	
a	minimum	

▪ When	using	gradient	descent,	you	should	ensure	that	all	features	
have	a	similar	scale,	or	else	it	will	take	much	longer	to	converge.	

▪ Partial	derivative	with	respect	to	weight:	how	much	will	the	cost	
function	change	if	you	change	weight	just	a	bit.	Once	you	have	
the	gradient	vector,	which	points	uphill,	just	go	in	the	opposite	
direction	to	go	downhill.	This	means	subtracting	partial	derivative	
from	the	weight

10



Stochastic	gradient	descent
▪ The	problem	with	batch	gradient	descent	is	that	it	uses	the	

whole	training	set	to	compute	the	gradients	at	every	step,	
which	makes	it	very	slow	when	the	training	set	is	large.	At	
the	opposite	extreme,	stochastic	gradient	descent	picks	a	
random	instance	in	the	training	set	at	every	step	and	
computes	the	gradient	based	on	that	instance.		
– each	training	step	is	much	faster	but	much	more	
stochastic	then	when	using	batch	gradient	descent	

– solution:	gradually	reduce	learning	rate	

▪ Mini-batch	gradient	descent:	compute	gradients	on	small	
random	sets	of	instances

11



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

12

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

13

min
w ∑

i

L(NN(xi, w), yi)

The	objective	is	not	convex	
Initialization	can	be	important

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

14

min
w ∑

i

L(NN(xi, w), yi)

The	objective	is	not	convex	
Initialization	can	be	important

:	learning	rate,	many	
tweaks	possible
γt



MOMENTUM
Training	a	Neural	Network



Momentum
Averaging	together	successive	gradients	seem	to	yield	a	much	better	
direction	

Intuition:	if	successive	gradients	steps	point	in	different	directions	we	
should	cancel	off	the	directions	that	disagree	

If	successive	gradient	steps	point	in	similar	directions,	we	should	go	faster	
in	that	direction		

16vumanfredi@wesleyan.edu



Momentum
Update	rule:	

	

before:		 	

now:						 			(“blend	in”	previous	direction)	

w ← w − γtgk

gk = ∇L(NN(xi, w), yi)

gk = ∇L(NN(xi, w), yi) + μgk−1

17vumanfredi@wesleyan.edu



Algorithms

RMSProp:	Estimate	per-dimension	magnitude	(running	
average),	then	divide	each	dimension	by	its	magnitude	

AdaGrad:	Estimate	per-dimension	cumulative	magnitude,	
then	divide	each	dimension	by	its	magnitude	

Adam:	Combine	momentum	and	RMSProp

18vumanfredi@wesleyan.edu



BACKPROPAGATION
Training	a	Neural	Network



The	derivative	of	the	loss	function?

If	the	neural	network	is	a	differentiable	function,	we	can	find	the	
gradient	
‣ Or	maybe	its	sub-gradient	
‣ This	is	decided	by	the	activation	functions	and	the	loss	function	

Easy	if	only	one	layer.	But	how	do	find	the	sub-gradient	of	a	more	
complex	function?	
‣ E.g.,	150	layer	neural	network	for	image	classification!	

20

We	need	an	efficient	algorithm:	
Backpropagation

∇L(NN(xi, w), yi)


