
Lecture 13: Neural Networks Intro
COMP 411, Fall 2021 

Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	content	from	the	
book	“Machine	Learning”	by	Tom	Mitchell	and	slides	created	by	Vivek	Srikumar	

(Utah)	and	Dan	Roth	(Penn)



vumanfredi@wesleyan.edu

Today’s	Topics

No	homework	over	the	break!		

Neural	networks	
▪ Structure,	expressiveness	
▪ Prediction	using	a	neural	network	
▪ Training	neural	networks	
▪ Practical	concerns



INFORMALLY
Neural	Networks



vumanfredi@wesleyan.edu 4

Where	are	we?

Learning	algorithms	
• Decision	trees	
• Linear	regression	
• Perceptron	

General	learning	principles	
• Overfitting	
• Mistake-bound	learning	
• Training	and	generalization	errors	
• Regularized	Empirical	Loss	
Minimization	

Produce	linear	
classifiers,	regressors	

Not	really	resolved	
• What	if	we	want	to	train	non-linear	classifiers?	
• Where	do	the	features	come	from?



5

Functions	Can	be	Made	Linear

Data	are	not	linearly	separable	in	one	dimension	
– Not	separable	if	you	insist	on	using	a	specific	class	of	functions

20

x



6

Blown	Up	Feature	Space

Data	are	separable	in	<x,	x2>	space

21

x

x2



vumanfredi@wesleyan.edu 7

Non-linear	⇒	Neural	networks

Linear	separability	depends	on	FEATURES!!	
– A	function	can	be	not	linearly	separable	with	one	set	of	
feature	but	linearly	separable	in	another	

Have	system	to	produce	features,	that	make	function	
linearly	separable	⇒	Neural	networks



vumanfredi@wesleyan.edu 8

We	have	seen	linear	threshold	units	
 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ

Features	

Dot	product	
Threshold	

 y
 +

−

sgn 
Prediction	

	sgn(wT x + b) = sgn(∑
i

wixi + b)

Learning	
Various	algorithms,	in	general,	
minimize	loss	

But	where	do	these	input	features	come	from?	
What	if	the	features	were	outputs	of	another	classifier?	

b + wTx



vumanfredi@wesleyan.edu 9

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−



vumanfredi@wesleyan.edu 10

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

1



vumanfredi@wesleyan.edu 11

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

Σ  +
−

Each	of	these	connections	
has	its	own	weight	as	well

1



vumanfredi@wesleyan.edu 12

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

Σ  +
−

Σ  +
−

1

This	is	a	two-layer	feed	forward	
neural	network

Σ  +
−

Σ  +
−



vumanfredi@wesleyan.edu 13

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

Σ  +
−

Σ  +
−

1

This	is	a	two-layer	feed	forward	
neural	network

Σ  +
−

Σ  +
−

The	input	layer
The	hidden	layer

The	output	layer

Think	of	the	hidden	layer	as	learning	a	good	representation	of	the	inputs



vumanfredi@wesleyan.edu 14

Features	from	classifiers

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

Σ  +
−

Σ  +
−

1

This	is	a	two-layer	feed	forward	
neural	network

Σ  +
−

Σ  +
−

The	dot	product	followed	by	the	
threshold	constitutes	a	neuron

Five	neurons	in	this	picture	(four	in	hidden	layer	and	one	output)



vumanfredi@wesleyan.edu 15

But	where	do	the	inputs	come	from?

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Σ  y
 +

−

Σ  +
−

Σ  +
−

1

Σ  +
−

Σ  +
−

What	if	the	inputs	were	the	outputs	of	a	classifier?	
We	can	make	a	three	layer	network	…	and	so	on.

The	input	layer



Rich	history,	starting	in	early	forties	(McCulloch/Pitts	1943)	

A	robust	approach	for	approximating	real-valued,	discrete-valued,	or	
vector	valued	functions	

Among	the	most	effective	general	purpose	supervised	learning	
methods	currently	known		

• Especially	for	complex	and	hard	to	interpret	data	such	as	real-
world	sensory	data	

The	Backpropagation	algorithm	for	neural	networks	has	been	shown	
successful	in	many	practical	problems	

• Across	various	application	domains

16

Neural	networks



vumanfredi@wesleyan.edu 17

Uses	of	neural	networks

Trained	to	drive	
– No-hands	across	America	(Pomerleau)	
– ARPA	Challenge	(Thrun)	

Trained	to	recognize	handwritten	digits	
– >	99%	accuracy	

Google	Deepmind	
– AlphaZero	chess	engine,	AlphaGo	for	Go,	…



MORE	FORMALLY
Neural	Networks



vumanfredi@wesleyan.edu 19

Why	"Neural	Network”

Brains	–	network	of	neurons	–	are	only	known	example	of	actual	
intelligence	

– Individual	neurons	are	slow,	boring	
– Brains	succeed	by	using	massive	parallelism	

Idea		
– use	for	building	approximators!	

Raises	many	issues	
– Is	computational	metaphor	suited	to	computational	hardware?	
– How	to	copy	the	important	part?	
– Are	we	aiming	too	low?



vumanfredi@wesleyan.edu 20

Biological	neurons

Neurons:	core	components	of	brain	and	the	nervous	system	
comprising		

1. Dendrites	that	collect	information	from	other	neurons	
2. An	axon	that	generates	outgoing	spikes



vumanfredi@wesleyan.edu 21

Biological	neurons

Neurons:	core	components	of	brain	and	the	nervous	system	
comprising		

1. Dendrites	that	collect	information	from	other	neurons	
2. An	axon	that	generates	outgoing	spikes

Modern	artificial	neurons	are	“inspired”	by	biological	neurons	
…	but	there	are	many,	many	fundamental	differences	



vumanfredi@wesleyan.edu 22

Artificial	neurons
A	neuron	accepts	a	collection	of	inputs	(a	vector	 )	and	produces	an	
output	by:	

1. Applying	a	dot	product	with	weights	 	and	adding	a	bias	 	
2. Applying	a	(possibly	non-linear)	transformation	called	an	activation		

										

x

w b

output = acgvagon(wTx + b)

Functions	that	very	loosely	mimic	a	biological	neuron

 

 

 

 

 

x1

x2

x3

x4

1

 

 

 

 

 

w1

w2

w3

w4

b

Features	

Dot	
product	

Threshold	
activation	

Σ  +
−

Other	activation	
functions	are	possible



vumanfredi@wesleyan.edu 23

Common	activation	functions

										output = acgvagon(wTx + b)
Also	called	transfer	functions

Name	of	the	neuron Activation	function:	activation(z)

Linear	unit z:	(i.e.,	no	change	to	the	input)

Threshold/sign	unit sgn(z)

Sigmoid	unit 1	/	(1	+	exp(-z))

Rectified	linear	unit	(ReLU) max(0,	z)

Tangent	hyperbolic	(Tanh)	unit tanh(z)



Multi-layer	neural	network

Idea		
• stack	several	layers	of	units		
• each	layer	uses	output	of	
previous	layer	as	input	

• can	represent	arbitrary	
functions	

24

Output

Hidden

Input

Activation

Designed	to	overcome	the	computational	(expressivity)	limitation		of	a	single	threshold	element

A	neural	network	is	a	function	that	converts	inputs	to	
outputs	defined	by	a	directed	acyclic	graph				



25

Basic	Units	
Linear	Unit	

– Multiple	layers	of	linear	functions	
	produce	linear	functions	

We	want	to	represent	nonlinear	functions	
– but	need	to	do	in	a	way	that	facilitates	

learning

oj = w ⋅ x

Output

Hidden

Input

Activation

w1
ij

w2
ij

Threshold	units:		 	
– are	not	differentiable,		hence	unsuitable	for	gradient	descent.		

		

Key	idea	
– notice	that	the	discontinuity	of	the	threshold	element	can	be	represents	by	a	

smooth	non-linear	approximation:	 (Rumelhart,	Hinton,	

Williiam,	1986),	(Linnainmaa,	1970)	,	see:	http://people.idsia.ch/~juergen/who-
invented-backpropagation.html	)

oj = sgn(w ⋅ x)

oj =
1

[1 + exp{−w ⋅ x}]

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html


Model	neuron	(logistic)
Neuron	is	modeled	by	a	unit		 		connected	by	

weighted	links	 	to	other	units	
𝑗

𝑤𝑖𝑗 𝑖

26

 

 

 

 

 

x1

x2

x3

x4

Tj

 

 

 

 

 

w17

w27

w37

w47

b

Σ

Features	

Dot	product	
Logistic	

 oj

 b + wTx

Net	input	to	a	unit	is	defined	as	 	

Output	of	a	unit	is	defined	as	 	

netj = ∑ wij ⋅ xi

oj =
1

1 + e−(netj−Tj)

 7
T

Tj

Use	a	non-linear,	differentiable	
output	function	such	as	the	
sigmoid	or	logistic	function



To	define	a	neural	network

Specify:	

▪ Structure	of	the	graph:	how	many	nodes,	the	connectivity	
▪ The	activation	function	on	each	node	
▪ The	edge	weights

27

Learned	from	
data

Architecture	of	the	network.	
Typically	predefined,	part	of	the	

design	of	the	classifier



A	brief	history	of	neural	nets
1943:	McCullough	and	Pitts	showed	how	linear	threshold	units	can	compute	
logical	functions	

1949:	Hebb	suggested	a	learning	rule	that	has	some	physiological	plausibility	

1950s:	Rosenblatt,	the	Perceptron	algorithm	for	a	single	threshold	neuron	

1969:	Minsky	and	Papert	studied	the	neuron	from	a	geometrical	perspective	

1970s,	80s:	Convolutional	neural	networks	(Fukushima,	LeCun),	the	back	
propagation	algorithm	(various)	

Early	2000s-today:	More	compute,	more	data,	deeper	networks	

See	also	https://people.idsia.ch//~juergen/deep-learning-overview.html

28


