Lecture 13: Neural Networks Intro COMP 411, Fall 2021 Victoria Manfredi

Acknowledgements: These slides are based primarily on content from the book "Machine Learning" by Tom Mitchell and slides created by Vivek Srikumar (Utah) and Dan Roth (Penn)

Today's Topics

No homework over the break!

Neural networks

- Structure, expressiveness
- Prediction using a neural network
- Training neural networks
- Practical concerns

Neural Networks INFORMALLY

Where are we?

Learning algorithms

- Decision trees
- Linear regression
- Perceptron

Produce *linear* classifiers, regressors

General learning principles

- Overfitting
- Mistake-bound learning
- Training and generalization errors
- Regularized Empirical Loss Minimization

Not really resolved

- What if we want to train non-linear classifiers?
- Where do the features come from?

Functions Can be Made Linear

Data are not linearly separable in one dimension

- Not separable if you insist on using a specific class of functions

Blown Up Feature Space

Data are separable in <x, x²> space

Non-linear \Rightarrow Neural networks

Linear separability depends on FEATURES!!

 A function can be not linearly separable with one set of feature but linearly separable in another

Have system to produce features, that make function linearly separable \Rightarrow Neural networks

We have seen linear threshold units

Prediction

$$\operatorname{sgn}(\mathbf{w}^T x + b) = \operatorname{sgn}(\sum_i w_i x_i + b)$$

Learning

Various algorithms, in general, minimize loss

Features

But where do these input features come from?

What if the features were outputs of another classifier?

 x_1

 x_2

 x_3

 x_4

1

This is a two-layer feed forward neural network

This is a two-layer feed forward neural network

The input layer

Think of the hidden layer as learning a good representation of the inputs

This is a two-layer feed forward neural network

Five neurons in this picture (four in hidden layer and one output)

But where do the inputs come from?

The input layer

What if the inputs were the outputs of a classifier? We can make a three layer network ... and so on.

Neural networks

Rich history, starting in early forties (McCulloch/Pitts 1943)

A robust approach for approximating real-valued, discrete-valued, or vector valued functions

Among the most effective **general purpose** supervised learning methods currently known

• Especially for complex and hard to interpret data such as realworld sensory data

The Backpropagation algorithm for neural networks has been shown successful in many practical problems

• Across various application domains

Uses of neural networks

Trained to drive

- No-hands across America (Pomerleau)
- ARPA Challenge (Thrun)

Trained to recognize handwritten digits

– > 99% accuracy

Google Deepmind

- AlphaZero chess engine, AlphaGo for Go, ...

Neural Networks MORE FORMALLY

Why "Neural Network"

Brains – network of neurons – are only known example of actual intelligence

- Individual neurons are slow, boring
- Brains succeed by using massive parallelism

Idea

use for building approximators!

Raises many issues

- Is computational metaphor suited to computational hardware?
- How to copy the important part?
- Are we aiming too low?

Biological neurons

Neurons: core components of brain and the nervous system comprising

- 1. Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes

Biological neurons

Neurons: core components of brain and the nervous system comprising

- 1. Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes

Modern *artificial* neurons are "inspired" by biological neurons ... but there are many, many fundamental differences

Artificial neurons

Functions that very loosely mimic a biological neuron

A neuron accepts a collection of inputs (a vector \mathbf{x}) and produces an output by:

- 1. Applying a dot product with weights ${f w}$ and adding a bias b
- 2. Applying a (possibly non-linear) transformation called an activation

 $output = activation(\mathbf{w}^T \mathbf{x} + b)$

Common activation functions

Also called transfer functions

$output = activation(\mathbf{w}^T\mathbf{x} + b)$

Name of the neuron	Activation function: activation(z)
Linear unit	z: (i.e., no change to the input)
Threshold/sign unit	sgn(z)
Sigmoid unit	1 / (1 + exp(-z))
Rectified linear unit (ReLU)	max(0, <i>z</i>)
Tangent hyperbolic (Tanh) unit	tanh(<i>z</i>)

Multi-layer neural network

Designed to overcome the computational (expressivity) limitation of a single threshold element

Idea

- stack several layers of units
- each layer uses output of previous layer as input
- can represent arbitrary functions

A neural network is a function that converts inputs to outputs defined by a directed acyclic graph

Basic Units

Linear Unit

- Multiple layers of linear functions $o_j = \mathbf{w} \cdot \mathbf{x}$ produce linear functions

We want to represent nonlinear functions

 but need to do in a way that facilitates learning

Threshold units: $o_i = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$

- are not differentiable, hence unsuitable for gradient descent.

Key idea

- notice that the discontinuity of the threshold element can be represents by a smooth non-linear approximation: $o_j = \frac{1}{[1 + \exp\{-\mathbf{w} \cdot \mathbf{x}\}]}$ (Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970), see: <u>http://people.idsia.ch/~juergen/who-invented-backpropagation.html</u>)

Model neuron (logistic)

Neuron is modeled by a unit j connected by weighted links w_{ij} to other units i

To define a neural network

Specify:

- Structure of the graph: how many nodes, the connectivity
- The activation function on each node
- The edge weights

Learned from data Architecture of the network. Typically predefined, part of the design of the classifier

A brief history of neural nets

1943: McCullough and Pitts showed how linear threshold units can compute logical functions

1949: Hebb suggested a learning rule that has some physiological plausibility

1950s: Rosenblatt, the Perceptron algorithm for a single threshold neuron

1969: Minsky and Papert studied the neuron from a geometrical perspective

1970s, 80s: Convolutional neural networks (Fukushima, LeCun), the back propagation algorithm (various)

Early 2000s-today: More compute, more data, deeper networks

See also https://people.idsia.ch//~juergen/deep-learning-overview.html