
Lecture 13: Gradient Descent Again

COMP 411, Fall 2021

Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	those	created	by	
Michael	Paul	(U	of	Colorado)

vumanfredi@wesleyan.edu

Today’s	Topics

Prediction	functions

Finding	maxima	and	minima

Gradient	descent

Revisiting	perceptron

LEARNING	PARAMETERS
Prediction	functions

Prediction	functions

Remember:	a	prediction	function	is	the	function	that	
predicts	what	the	output	should	be,	given	the	input

4

Prediction	functions

Linear	regression:

Linear	classification	(perceptron):

Need	to	learn	what	 	should	be!

f(x) = wTx + b

f(x) = { 1, wTx ≥ 0
−1, wTx < 0

w

5

Learning	parameters

Goal	is	to	learn	to	minimize	error

‣ ideally:	true	error

‣ instead:	training	error

The	loss	function	gives	the	training	error	when	using	
parameters	 ,	denoted	 .

‣ Also	called	cost	function

‣ More	general:	objective	function:	in	general,	objective	
could	be	to	minimize	or	maximize;	with	loss/cost	functions,	
we	want	to	minimize

w L(w)

6

Learning	parameters

Goal	is	to	minimize	loss	function.

How	do	we	minimize	a	function?	

Let’s	review	some	math	…

7

USING	DERIVATIVES
Finding	minima	and	maxima

Rate	of	change

The	slope	of	a	line	is	also	
called	the	rate	of	change	
of	the	line

9

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

y = 1/2x + 1

“rise”

“run”
slope	=	“rise”	
over	“run”

Rate	of	change

For	nonlinear	functions,	
the	“rise	over	run”	
formula	gives	you	the	
average	rate	of	change	
between	two	points

10

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

Average	slope	
from	 	
to	 	is	

x = − 1
x = 0 −1

Rate	of	change

There	is	also	a	concept	of	
rate	of	change	at	
individual	points	(rather	
than	two	points)

11

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

Slope	at	
	is	x = − 1 −2

Rate	of	change

The	slope	at	a	point	is	
called	the	derivative	at	
that	point

12

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

Intuition:	measure	the	slope	
between	two	points	that	
are	really	close	together

Limit	as	 	goes	to	zero

f(x + c) − f(x)
c

c

f(x)
f(x) + c

Rate	of	change

The	slope	at	a	point	is	
called	the	derivative	at	
that	point

13

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

Intuition:	measure	the	slope	between	two	
points	that	are	really	close	together

Maxima	and	minima

Whenever	there	is	a	peak	in	the	data,	this	is	a	maximum

The	global	maximum	is	the	highest	peak	in	the	entire	data	
set,	or	the	largest	 	value	the	function	can	output

A	local	maximum	is	any	peak,	when	the	rate	change	
switches	from	positive	to	negative

f(x)

14

Maxima	and	minima

Whenever	there	is	a	trough	in	the	data,	this	is	a	minimum

The	global	minimum	is	the	lowest	trough	in	the	entire	
data	set,	or	the	smallest	 	value	the	function	can	
output

A	local	minimum	is	any	trough,	when	the	rate	change	
switches	from	negative	to	positive

f(x)

15

Maxima	and	minima

All	global	maxima	and	minima	are	also	local	maxima	and	minima

16

https://www.mathsisfun.com/algebra/functions-maxima-minima.html

Finding	minima

The	derivative	is	zero	at	any	local	maximum	or	minimum

17

https://www.mathsisfun.com/algebra/functions-maxima-minima.html

Finding	minima

The	derivative	is	zero	at	any	local	maximum	or	minimum

One	way	to	find	a	minimum:	set	 	and	solve	for	

	when	 	so	minimum	at	

f′￼(x) = 0 x

f(x) = x2

f′￼(x) = 2x
f′￼(x) = 0 x = 0 x = 0

18

Finding	minima

The	derivative	is	zero	at	any	local	maximum	or	minimum

One	way	to	find	a	minimum:	set	 	and	solve	for	

‣ For	most	functions,	there	isn’t	a	way	to	solve	this

‣ Instead:	algorithmically	search	different	values	of	 	
until	you	find	one	that	results	in	a	gradient	near	0

f′￼(x) = 0 x

x

19

Finding	minima

If	the	derivative	is	positive,	the	function	is	increasing

‣ don’t	move	in	that	direction,	because	you’ll	be	
moving	away	from	a	trough

If	the	derivative	is	negative,	the	function	is	decreasing

‣ Keep	going,	since	you’re	getting	closer	to	a	trough

20

Finding	minima

For	nonlinear	functions,	
the	“rise	over	run”	
formula	gives	you	the	
average	rate	of	change	
between	two	points

21

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

f′￼(−1) = − 2

At	 	the	function	is	
decreasing	as	 	gets	larger.	This	is	
what	we	want.	So	let’s	make	 	
larger.	Increase	 	by	the	size	of	
the	gradient:	

x = − 1
x

x
x

−1 + 2 = 1

Finding	minima

For	nonlinear	functions,	
the	“rise	over	run”	
formula	gives	you	the	
average	rate	of	change	
between	two	points

22

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

f′￼(1) = 2

At	 	the	function	is	
increasing	as	 	gets	larger.	This	is	
not	what	we	want.	So	let’s	make	 	
smaller.	Decrease	 	by	the	size	of	
the	gradient:	

x = 1
x

x
x

1 − 2 = − 1

Finding	minima
We	will	keep	jumping	between	
the	same	two	points	this	way

We	can	fix	this	by	using	a	
learning	rate	or	step	size

23

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

f′￼(−1) = − 2

Finding	minima

Let’s	use	

Eventually	we’ll	reach	 	

x + = 2η = ?

η = 0.25

f′￼(−1) = − 2
x = − 1 + 2(0.25) = − 0.5

f′￼(−0.5) = − 1
x = − 0.5 + 1(0.25) = − 0.25

x = 0

24

-4					-3					-2					-1						0						1						2						3							4	

4					

3					

2					

1						

0						

-1						

-2						

-3							

-4	

f(x) = x2

f′￼(−1) = − 2

REVIEW
Gradient	descent

Gradient	descent

1. Initialize	the	parameters	 	to	some	guess	(usually	all	zeroes,	
or	random	values)

2. Update	the	parameters:

3. Update	the	learning	rate	 		

How?	Discuss	later	…	

4. Repeat	steps	2-3	until 	is	close	to	zero

w

w = w − η∇L(w)

η

∇L(w)

26

Gradient	descent

Gradient	descent	is	guaranteed	to	eventually	find	a	local	
minimum	if	

‣ 	the	learning	rate	is	decreased	appropriately

‣ a	finite	local	minimum	exists	(i.e.,	the	function	
doesn’t	keep	decreasing	forever)

27

Gradient	ascent

What	if	we	want	to	find	a	local	maximum?

‣ 	Same	idea,	but	the	update	rule	moves	the	
parameters	in	the	opposite	direction:	

	w = w + η∇L(w)

28

Learning	rate

In	order	to	guarantee	that	the	algorithm	will	converge,	
the	learning	rate	should	decrease	over	time.	Here	is	a	
general	formula

‣ At	iteration	

	where	

	

t
ηt = c1/(ta + c2)

0.5 < a < 2
c1 > 0
c2 ≥ 0

29

Stopping	criteria

For	most	functions,	you	probably	won’t	get	the	gradient	
to	be	exactly	equal	to	 	in	a	reasonable	amount	of	time

Once	the	gradient	is	sufficiently	close	to	 ,	stop	trying	to	
minimize	further

How	do	we	measure	how	close	a	gradient	is	to	 ?

0

0

0

30

Distance

A	special	case	is	the	distance	between	a	point	and	zero	
(the	origin)

				also	written	

This	is	called	the	Euclidean	norm	of	

‣ A	norm	is	a	measure	of	a	vector’s	length

‣ The	Euclidean	norm	is	also	called	the	L2	norm

d(p, 0) =
k

∑
i=1

p2
i | |p | |

p

31

Stopping	criteria

Stop	when	the	norm	of	the	gradient	is	below	some	
threshold,	 :

			

Common	values	of	 	are	around	.01,	but	if	it	is	taking	too	
long,	you	can	make	the	threshold	larger

θ
| |∇L(w) | | < θ

θ

32

Gradient	descent

1. Initialize	the	parameters	 	to	some	guess	(usually	all	
zeroes,	or	random	values)

2. Update	the	parameters:

3. Repeat	step	2	until 	or	until	the	
maximum	number	of	iterations	is	reached

w

w = w − η∇L(w)
η = c1/(ta + c2)

| |∇L(w) | | < θ

33

Stochastic	gradient	descent

A	variant	of	gradient	descent	makes	updates	using	an	
approximate	of	the	gradient	that	is	only	based	on	one	
instance	at	a	time

Li(w) = (yi − wTxi)2

dLi /dwj = − 2xij(yi − wTxi

34

Stochastic	gradient	descent	algorithm

Iterate	through	the	instances	in	a	random	order.	For	each	
instance	 ,	update	the	weights	based	on	the	gradient	of	
the	loss	for	that	instance	only

The	gradient	for	one	instance’s	loss	is	an	approximation	
to	the	true	gradient.	

Stochastic	=	Random

The	expected	gradient	is	the	true	gradient.

xi

w = w − η∇Li(w; xi)

35

Revisiting	Perceptron

Revisiting	perceptron

In	perceptron,	you	increase	the	weights	if	they	were	an	
underestimate	and	decrease	if	they	were	an	
overestimate

This	looks	similar	to	the	gradient	descent	rule

wj = wj + η(yi − f(xi))xij

37

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

38

The	derivative	here	is	0.	No	
gradient	descent	updates	if	the	
prediction	was	correct

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

39

The	derivative	here	is	 .	

If	 	is	positive,	 	will	be	negative	
when	 	is	positive,	so	the	gradient	
descent	update	will	be	positive.	

−yixij

xij dLi /wj
yi

This	means	the	classifier	
made	an	underestimate,	
so	perceptron	makes	the	
weights	larger

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

40

If	 	is	positive,	 	will	be	positive	
when	 	is	negative,	so	the	gradient	
descent	update	will	be	negative

xij dLi /wj
yi

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

41

The	derivative	doesn’t	actually	
exist	at	this	point	(the	function	
isn’t	smooth)

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

42

A	sub	gradient	is	a	generalization	
of	the	gradient	for	points	that	are	
not	differentiable.	

0	and	 	are	both	valid	sub	
gradients	at	this	point

−yixij

Revisiting	perceptron

Perceptron	has	a	different	loss	function:

Perceptron	is	a	stochastic	gradient	descent	algorithm	
using	this	loss	function	(and	using	the	sub	gradient	
instead	of	gradient)

Li(w; xi) = {0 yi(wTxi) ≥ 0
−yi(wTxi) otherwise

43

