
Lecture 11: Perceptrons

COMP 411, Fall 2021
Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	content	from	the	
book	“Machine	Learning”	by	Tom	Mitchell	and	slides	created	by	Vivek	Srikumar	

(Utah)	and	Dan	Roth	(Penn)

vumanfredi@wesleyan.edu

Today’s	Topics

Perceptron	 	
– Overview	
– Perceptron	learning	algorithm	
– Geometry	of	algorithm	update	
– Learnability

OVERVIEW
Perceptron

Recall:	linear	classifiers
Inputs	are	 	dimensional	vectors,	denoted	by	 	
Output	is	a	label	 	

Linear	Threshold	Units	classify	an	example	 	using	parameters	 	(a	 	
dimensional	vector)	and	 	(a	real	number)	according	to	the	following	
classification	rule	

Output	=	 	=	 	

if	 	
if	 	

	is	called	the	bias	term

d x
y ∈ {−1,1}

x w d
b

sign(wTx + b) sign(∑
i

wixi + b)

wTx + b ≥ 0 ⇒ y = + 1
wTx + b < 0 ⇒ y = − 1

b

4

Inputs	are	 	dimensional	vectors,	denoted	by	 	
Output	is	a	label	 	

Linear	Threshold	Units	classify	an	example	 	using	parameters	 	(a	 	
dimensional	vector)	and	 	(a	real	number)	according	to	the	following	
classification	rule	

d x
y ∈ {−1,1}

x w d
b

5

Recall:	linear	classifiers

x1

x2

x3

x4

1

w1

w2

w3

w4

b

Σ

Features	

Dot	product	
Threshold	

 y
 +

−

sgn b + wT x

Perceptron	=	Linear	Threshold	Unit

Linear	Threshold	Functions		
Many	functions	are	Linear		

– Conjunctions:	
• 																																	

• 	
– At	least	 	of	 :	

• 	
• 	

Many	functions	are	not	
– Xor:	 	
– Non	trivial	DNF:	 	

But	can	be	made	linear	

Note:	all	the	variables	above	are	Boolean	variables

y = x1 ∧ x3 ∧ x5

y = sgn{1 ⋅ x1 + 1 ⋅ x3 + 1 ⋅ x5 − 3}; w = (1,0,1,0,1) b = 3
m n

y = at	least	2	of	{x1, x3, x5}
y = sgn{1 ⋅ x1 + 1 ⋅ x3 + 1 ⋅ x5 − 2}; w = (1,0,1,0,1) b = 2

y = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)
y = (x1 ∧ x2) ∨ (x3 ∧ x4)

6

Dot	product

The	dot	product	of	two	vectors	is	written	as	 	or	 ,	which	

is	defined	as: 	

Example	
	

	
	

If	dot	product	of	two	vectors	is	zero:	means	the	two	vectors	are	
perpendicular	(angle)	

	

mTx m ⋅ x

mTx =
k

∑
i=1

mixi

m = < 5.13,1.08, − 0.03,7.29 >
x = < x1, x2, x3, x4 >
mTx = 5.13x1 + 1.08x2 − 0.03x3 + 7.29x4

90∘

7

Length	or	norm	of	a	vector	

8

The	length	or	norm	of	a	vector	 	is	the	square	root	of	 	

Dot	product	here	is	not	zero	(is	not	perpendicular	to	itself),	so	now	have	 	angle:	dot	
product	of	 	gives	length	of	 	squared	
	

v length = | |v | | = v ⋅ v

v 0∘

v ⋅ v v

See	Introduction	to	Linear	Algebra	by	Gilbert	Strang

In	2	dimensions:						 	

In	3	dimensions:						 	

	

length = | |v | | = v2
1 + v2

2

length = | |v | | = v2
1 + v2

2 + v2
e

Why	is	the	bias	term	needed?

9

 sgn(b + w1x1 + w2x2)

 w1x1 + w2x2 = 0

 x2

 x1

- -----

-

- -

+++
+ +

+
+++

+
+

An	illustration	in	two	dimensions

 [w1, w2]

If	b	is	zero,	then	we	are	restric[ng	
the	learner	only	to	hyperplanes	

that	go	through	the	origin		

May	not	be	expressive	enough	

The	geometry	of	a	linear	classifier

10

 sgn(b + w1x1 + w2x2)

 b + w1x1 + w2x2 = 0

				We	only	care	about	the	sign,	
not	the	magnitude

In	higher	dimensions,	a	linear	
classifier	represents	a	

hyperplane	that	separates	the	
space	into	two	half-spaces x2

 x1

 [w1, w2]

- -----

-

- -

+++
+ +

+
+++

+
+

Weight	vector	
that	defines	the	
hyperplane	

 b + w1x1 + w2x2 < 0

 b + w1x1 + w2x2 > 0

LEARNING	ALGORITHM
Perceptron

The	perceptron	algorithm
Rosenblatt	1958	

– Suggested	that	when	a	target	output	value	is	provided	for	a	single	
neuron	with	fixed	input,	it	can	incrementally	change	weights	and	learn	
to	produce	the	output	using	the	Perceptron	learning	rule	(algorithm)	

The	goal	is	to	find	a	separating	hyperplane	
– For	linearly	separable	data,	guaranteed	to	find	one	

Online	mistake-driven	algorithm	
– Processes	one	example	at	a	time	
– Update	your	hypothesis	only	when	you	make	mistakes	
– Now,	we	can	only	reason	about	#	of	mistakes,	not	#	of	examples	

12

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

13

Remember:	
Prediction	=	 	

There	is	typically	a	bias	term	also
,	but	the	bias	may	be	

treated	as	a	constant	feature	and	
folded	into	

sgn(wTx)

(wTx + b)

w

Footnote:		For	some	algorithms	it	is	mathematically	easier	to	represent	False	as	-1,	and	other	
times	as	0.	For	the	perceptron	algorithm,	treat	-1	as	false	and	+1	as	true

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

14

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

15

	is	the	learning	rate,	a	small	positive	
number	less	than	1
r

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

16

	is	the	learning	rate,	a	small	positive	
number	less	than	1
r

Update	only	on	error:	a	mistake-driven	
algorithm

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

17

	is	the	learning	rate,	a	small	positive	
number	less	than	1
r

Update	only	on	error:	a	mistake-driven	
algorithm

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Mistake	can	be	written	as	yiwTxi ≤ 0

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

18

	is	the	learning	rate,	a	small	positive	
number	less	than	1
r

Update	only	on	error:	a	mistake-driven	
algorithm

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Mistake	can	be	written	as	yiwTxi ≤ 0

GEOMETRY	OF	UPDATE
Perceptron

Intuition	behind	the	update
Suppose		we	have	made	a	mistake	on	a	positive	example	
That	is,	 	and	 	

Call	the	new	weight	vector	 	(say)	

The	new	dot	product	 		

For	a	positive	example,	the	Perceptron	will	increase	the	score	
assigned	to	the	same	input	

Similar	reasoning	for	negative	examples	

y = + 1 wT
t x ≤ 0

wt+1 = wt + x r = 1

wT
t+1x = (wt + x)Tx = wT

t x + xTx ≥ wT
t x

20

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

21

Perceptron	in	action

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Current	
decision	
boundary

wT x = 0

	
Current	weight	

vector	

w

	(with)	
next	item	to	be	

classified

x y = + 1

	as	a	vectorx

	as	a	vector	added	to	x
w

	
New	

decision	
boundary

wT x = 0

		
New	weight	

vector	

w

(Figures	from	Bishop	2006)
Positive
Negative

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

LEARNABILITY
Perceptron

23

Perceptron	Convergence

Perceptron	Convergence	Theorem:	If	there	exist	a	set	of	
weights	that	are	consistent	with	the	data	(i.e.,	the	data	is	
linearly	separable),	the	perceptron	learning	algorithm	will	
converge.	Further,	the	number	of	times	the	perceptron	
must	adjust	weights	before	convergence	is	upper	bounded	

Perceptron	Cycling	Theorem:	If	the	training	data	is	not	
linearly	separable	the	perceptron	learning	algorithm	will	
eventually	repeat	the		same	set	of	weights	and	therefore	
enter	an	infinite	loop.

Perceptron	Learnability
Can’t	learn	what	it	can’t	represent	

– Only	linearly	separable	functions	

Minsky	and	Papert	(1969)	wrote	an	influential	book	demonstrating	
Perceptron’s	representational	limitations	

– Parity	functions	can’t	be	learned	(XOR)	
– In	vision,	if	patterns	are	represented	with	local	features,	can’t	
represent	symmetry,	connectivity	

Research	on	Neural	Networks	stopped	for	years	…	

Rosenblatt	himself	(1959)	asked,	
– “What	pattern	recognition	problems	can	be	transformed	so	as	to	
become	linearly	separable?”	

24

Why	is	XOR	not	linearly	separable?
Perceptron	uses	linear	function	to	predict	classes	(negative	or	positive)	for	
inputs:	e.g.,	 	

XOR	function	is	non-linear:	
		

	
	
	
	

sgn(b + w1x1 + w2x2)

f(a, b) = a + b − 2ab
f(a = 0,b = 0) = 0 + 0 − 2 ⋅ 0 ⋅ 0 = 0
f(a = 0,b = 1) = 0 + 1 − 2 ⋅ 0 ⋅ 1 = 1
f(a = 1,b = 0) = 1 + 0 − 2 ⋅ 1 ⋅ 0 = 1
f(a = 1,b = 1) = 1 + 1 − 2 ⋅ 1 ⋅ 1 = 0

25

a = 0,b = 0
 a

 b

a = 0,b = 1 a = 1,b = 1

a = 1,b = 0

Beyond	the	separable	case
Good	news	
‣ Perceptron	makes	know	assumptions	about	data	distribution,	
could	be	even	adversarial	

‣ After	a	fixed	number	of	mistakes,	you	are	done.	Don’t	even	
need	to	see	more	data		

Bad	news:	Real	world	is	not	linearly	separable	
‣ Can’t	expect	to	never	make	mistakes	again	
‣ What	can	we	do:	more	features,	try	to	be	linearly	separable	if	
you	an,	use	averaged/voted	perceptron	

26

Summary:	perceptron

• Online	learning	algorithm,	very	widely	used,	easy	to	
implement	

• Additive	updates	to	weights	

• Geometric	interpretation	

• You	should	be	able	to	implement	the	perceptron	
algorithm

27

