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Today’s	Topics

Homework	4	out	
– Due	out	Thursday	October	7,	by	11:59p	

Least	squares	method	for	regression	
– Examples	
– The	LMS	objective	
– Gradient	descent	
– Incremental/stochastic	gradient	descent



OVERVIEW
LMS	Regression



What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age
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Weight		
(x100lb)	

x1

Age	
(years)	
x2

Mileage

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

What	we	want:	a	function	
that	can	predict	mileage	
using	 	and	x1 x2



Prediction	of	continuous	variables

Predict	housing	price	from	house	size,	lot	size,	rooms,	
neighborhood,	….	

Predict	life	expectancy	increase	from	medication,	disease	
state,	…	

Predict	crop	yield	from	precipitation,	fertilizer,	
temperature,	…
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Linear	regression:	The	strategy
Predicting	continuous	values	using	a	linear	model	

Assumption:		the	output	is	a	linear	function	of	the	inputs	
Mileage	=	 	

Learning:	using	the	training	data	to	find	the	best	possible	value	of	 	

Prediction:	given	the	values	for	 	for	a	new	car,	use	the	learned	 	
to	predict	the	Mileage	for	the	new	car

w0 + w1x1 + w2x2

w

x1, x2 w

6

Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w



Linear	regression:	The	strategy
Inputs	are	vectors:	 	
Outputs	are	real	numbers:	 	

We	have	a	training	data	set:	
	

We	want	to	approximate	 	as	
								 	

			 	

	is	the	learned	weight	vector	in	 	

We	can	write	compactly	as		
						 	

x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd

f (x) = y = w1 +
d

∑
i=2

wjxj

w ℜd

f (x) = y = wTx
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For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier	

												 	xi =

1
x1
x2
⋮
xd

To	avoid	special	
treatment	of	w1

Have	made	assumption	that	 	is	a	
linear	function!

f



Examples

8

x2

y 1-dimensional	input
Predict	using	y = w1 + w2x2

The	linear	function	is	not	our	only	
choice.	We	could	have	tried	to	fit	
the	data	as	another	polynomial

Predict	using	y = w1 + w2x2 + w3x3

2-dimensional	input

x2

x3

y

weight

age

years



OBJECTIVE
LMS	Regression



What	is	the	best	weight	vector?
Question:	how	do	we	know	which	weight	vector	is	the	best	one	for	
a	training	set	(having	made	assumption	that	 	is	a	linear	function)?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

f

(xi, yi)
|yi − wTxi |
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x2

y

True	output Predicted	output



What	is	the	best	weight	vector?
Question:	how	do	we	know	which	weight	vector	is	the	best	one	for	a	
training	set	(having	made	assumption	that	 	is	a	linear	function)?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be	

	

One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

f

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w
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Squared	error	is	a	popular	loss	
function:	sum	of	squared	costs	
over	the	training	set.	Dividing	
by	2	rather	than	m	will	make	
our	math	work	out	nicely	later



A	General	Framework	for	Learning

Goal:	predict	an	unobserved	output	value	 	based	on	an	observed	
input	vector	 	

How?	Estimate	a	functional	relationship	 		from	a	set		 	

• Classification:	 	(or	 ),		

• Regression:	 	)	

What	do	we	want	 	to	satisfy?		

• We	want	to	minimize	the	Risk:		 	

• Where	 	denotes	the	expectation	with	respect	to	the	true	
distribution.

y ∈ Y
x ∈ X

y ∼ f(x) {(x, y)i}i=1,n

y ∈ {0,1} y ∈ {1,2,…, k}
y ∈ ℜ

f(x)
L( f()) = EX,Y([ f(x) ≠ y])

EX,Y

Simple	loss	function:	#	of	mistakes,	
	is	an	indicator	function[ f(x) ≠ y]



A	General	Framework	for	Learning

We	want	to	minimize	the	Risk:	 	

• Where	 	denotes	the	expectation	with	respect	to	the	true	distribution.	

We	cannot	minimize	this	loss!	
• Instead,	we	try	to	minimize	the	empirical	classification	error	

For	a	set	of	training	examples	 ,	where	 	is	#	of	examples,	try	to	minimize:		

		

This	minimization	is	typically	NP-hard.	To	alleviate	this	computational	problem,	
minimize	a	new	function		-	a	convex	upper	bound	of	the	classification	error	

	

L( f()) = EX,Y([ f(X ) ≠ Y ])
EX,Y

{(xiyi)}i=1,m m

L′ ( f()) =
1
m ∑

i=1:m

[ f(xi) ≠ yi]

I( f(x), y) = [ f(x) ≠ y] = {1	when	f(x) ≠ y; 0	otherwise	}



Algorithmic	View	of	Learning:	an	Optimization	Problem

A	Loss	Function	 	measures	the	penalty	incurred	by	a	classifier	 	
on	example	 .	

There	are	many	different	loss	functions	one	could	define:	
– Misclassification	Error	(	0-1	loss):		

																			 ;			 	otherwise	
– Squared	Loss:	

																			 	
– Input	dependent	loss:	

																				 ;			 	otherwise.	

L( f(x), y) f
(x, y)

L( f(x), y) = 0	if	f(x) = y 1

L( f(x), y) = ( f(x) − y)2

L( f(x), y) = 0	if	f(x) = y c(x)
f(x) − y

A	continuous	convex	loss	
function	allows	a	simpler	
optimization	algorithm

L



Loss
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Here	f(x)	is		the	prediction	 	
		 is	the	correct	value

∈ ℜ
y ∈ {−1,1}

Square	Loss	
L(y, f (x)) = (y − f (x))2

Log	Loss				
1

ln2
log(1 + exp−yf(x))

Hinge	Loss	
L(y, f (x)) = max(0,1 − yf (x))

0-1	Loss					
L(y, f (x)) =

1
2

(1 − sgn(yf (x)))

z = y ⋅ f(x)

Label	 	is	in	range	from	-1	through	1	
	is	loss	between	prediction	 	and	label	of	1	or	-1

y
Error (z) z

Error(z)



What	causes	prediction	errors?
Noise	in	the	measurement	

– suppose	I	tell	you	that	I	measure	the	temperature	at	3a	every	day.	There	will	
be	some	kind	of	natural	variation	in	the	temperatures.	

Our	ignorance	about	the	system	
– Maybe	it’s	not	important	that	I	take	the	temperature	at	3a.	Maybe	it’s	
important	where	in	the	building	I	take	the	temperature.	Maybe	I	am	
measuring	in	the	kitchen	or	next	to	an	air	conditioner.	Or	maybe	I	am	
measuring	inside	an	air-conditioned	room.	

Could	say	that	natural	variations	are	due	to	factors	that	you	don’t	know	anything	
about.	

– could	very	well	be	that	there	is	no	real	natural	variation	in	the	data,	no	noise.	
All	of	the	uncertainty	about	the	data	arises	from	my	lack	of	knowledge.	But	
that	is	a	philosophical	question.	There	are	things	which	are	measurable	which	
we	don’t	measure.
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Least	Mean	Squares	(LMS)	Regression

	

Different	strategies	exist	for	learning	by	optimization	
• Gradient	descent:	is	a	popular	algorithm	
• Matrix	inversion:	for	this	particular	minimization	objective,	there	is	also	
an	analytical	solution;	no	need	for	gradient	descent:	 	

min
w

1
2

m

∑
i=1

(yi − wTxi)2

b = (XT X )−1XTY
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Learning:		minimizing	mean	squared	error



Gradient	descent	vs.	matrix	inversion
Gradient	descent	pros	

– Biologically	plausible	
– Each	iteration	cost	only	 	

– If	uses	 	iterations,	faster	than	Matrix	inversion	( 	
– More	easily	parallelizable	

Gradient	descent	cons	
– It’s	moronic	…	essentially	a	slow	way	to	build	 	matrix,	then	solve	a	set	of	
linear	equations	

– If	 	is	small,	it’s	especially	outrageous.	If	 	is	large	then	direct	matrix	inversion	
method	can	be	problematic	but	not	impossible	if	you	want	to	be	efficient	

– Need	to	choose	a	good	learning	rate	…	how?	
– Matrix	inversion	takes	predictable	time.	You	can’t	be	sure	when	gradient	
descent	will	stop

O(mn)
< m ∼ O(N2 log(N ))

XT X

n n

18



GRADIENT	DESCENT
LMS	Regression



Gradient	of	the	cost
Remember	that	 	is	a	vector	with	 	elements		

	

To	find	the	best	direction	in	the	weight	space	 	we	compute	the	
gradient	of	 	with	respect	to	each	of	the	components	of	

	 	

This	vector	specifies	the	direction	that	produces	the	steepest	
increase	in	 .	We	want	to	modify	 		in	the	direction	of	 ,	
where	(with	a	fixed	step	size	 ):	
	 	

w d
w = [w1, w2, w3, …, wj, …, wd]

w
J

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

J w −∇J(w)
r

wt+1 = wt − r∇J(wt)
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Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1
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Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize



Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1
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Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w
w4 w3 w2 w1

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize



	

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	
– Compute	gradient	of	 	at	 .	Call	it	 	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	the	gradient	of	 ?J



Gradient	of	the	cost

The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wi

=
∂

∂wj

1
2

m

∑
i=1

(yi − wT xi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wT xi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

= −
1
2

m

∑
i=1

2(yi − wT xi)(xij)

= −
m

∑
i=1

(yi − wT xi)xij
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J(w) =
1
2

2

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Check whether i’s and j’s are 
okay, and why last line is 

negative



																																																			

Gradient	of	the	cost

The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wi

=
∂

∂wj

1
2

m

∑
i=1

(yi − wT xi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wT xi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

= −
1
2

m

∑
i=1

2(yi − wT xi)(xij)

= −
m

∑
i=1

(yi − wT xi)xij
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	of	the	
gradient	vector

Sum	of Error					x					Input

Check whether i’s and j’s are 
okay, and why last line is 

negative



Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)



Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

This	algorithm	is	guaranteed	to	converge	to	the	minimum	of	 	if	 	is	small	enough	(small	enough	steps).	
Why?	The	objective	 	is	a	convex	function	here	(LMS	for	linear	regression):	the	surface	contains	only	a	

single	global	minimum.	The	surface	may	have	local	minimum	if	the		loss	function	is	different.

J r
J



INCREMENTAL/STOCHASTIC	
GRADIENT	DESCENT

Linear	Regression



Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

The	weight	vector	is	not	updated	until	all	
errors	are	calculated.	

Why	not	make	early	updates	to	the	weight	
vector	as	soon	as	we	encounter	errors	instead	

of	waiting	for	a	full	pass	over	the	data?



Incremental/stochastic	gradient	descent

Repeat	for	each	example	 	
– Pretend	that	entire	training	set	is	represented	by	this	single	example	
– Use	this	example	to	calculate	the	gradient	and	update	the	model	

Contrast	with	batch	gradient	descent	which	makes	one	update	to	
the	weight	vector	for	every	pass	over	the	data	

(xi, yi)

30



Incremental/stochastic	gradient	descent
1. Initialize	 			

2. For	 	until	error	is	below	a	threshold	
– For	each	training	example	 ,	update	 .	For	each	element	of	the	weight	

vector	( )		

	

May	get	close	to	optimum	much	faster	than	the	batch	version.	In	general	-	does	not	
converge	to	global	minimum.	Decreasing	 	with	time	guarantees	convergence.			But,	
online/incremental	algorithms	are	often	preferred	when	the	training	set	is	very	large	

w

t = 0,1,2,…
(xi, yi) w

wj

wt+1
j = wt

j − r(yi − wTxi)xij

r
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Contrast	with	the	previous	method,	
where	the	weights	are	updated	only	
after	all	examples	are	processed	once	

This	update	rule	is	also	called	the	Widrow-Hoff	rule	in	the	
neural	networks	literature



Learning	Rates	and	Convergence

▪ In	the	general	(non-separable)	case	the	learning	rate	 	must	
decrease	to	zero	to	guarantee	convergence.	

▪ The	learning	rate	is	called	the	step	size.	There	are	more	
sophisticated	algorithms	that	choose	the	step	size	automatically	
and	converge	faster.		

▪ Choosing	a	better	starting	point	also	has	impact.		

▪ The	gradient	descent	and	its	stochastic	version	are	very	simple	
algorithms,	but	almost	all	the	algorithms	we	will	learn	in	the	class	
can	be	traced	back	to	gradient	decent	algorithms	for	different	loss	
functions	and	different	hypotheses	spaces.	

r

32



vumanfredi@wesleyan.edu 33

Linear	regression:	summary

▪ What	we	want:	predict	a	real-valued	output	using	
feature	representation	of	the	input	

▪ Assumption:	output	is	a	linear	function	of	the	inputs		

▪ Learning	by	minimizing	total	cost	
– gradient	descent	and	stochastic	gradient	descnt	to	find	the	
best	weight	vector	

– This	particular	optimization	can	be	computed	directly	by	
framing	the	problem	as	a	matrix	problem


