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Today’s	Topics

Homework	4	out	
– Due	Thursday,	March	3	by	5p	

Checkpoint	
▪ The	bigger	picture	

Linear	models	
▪ Overview	
▪ What	functions	do	linear	classifiers	express?



Homework	4	discussion	

Decision	tree	questions?	
Python	questions?	
Scikit	questions?	

Cross-validation	questions?	



THE	BIGGER	PICTURE
Checkpoint



Checkpoint:	the	bigger	picture

Supervised	learning:	instances	and	hypotheses	

Specific	learners	
▪ Decision	trees	

General	ML	ideas	
▪ Features	as	high	dimensional	vectors	
▪ Overfitting
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Model	itself	is	a	function.	Once	it	
has	been	trained,	can	classify	new	
examples,	aka	make	predictions	
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Labeled	
data

Learning	
algorithm

Hypothesis/
Model	h

New	example																													Predictionh

More	general	than	just	decision	trees



OVERVIEW
Linear	models



Where	are	we?
What	are	linear	models?	
‣ Why	linear	classifiers	(and	regressors)?	
‣ Geometry	of	linear	classifiers	
‣ A	notational	simplification	
‣ How	do	you	learn	a	linear	classifier?	

What	functions	do	linear	classifiers	express?	

13

A	hypothesis	class



Is	learning	possible	at	all?

There	are	 		possible	
Boolean	functions	over	4	inputs	

▪ Why?	There	are	16	possible	outputs.	
each	way	to	fill	these	16	slots	is	a	
different	function,	giving	 	
functions	

We	have	seen	7	outputs	

We	cannot	know	what	the	rest	are	
without	seeing	them	

▪ Think	of	an	adversary	filing	in	the	
labels	every	time	you	make	a	guess	
at	a	function	

216 = 65536

216
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x1 x2 x3 x4 y
0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?
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How	could	we	possibly	learn	anything?	
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Solution:	restrict	the	search	space
A	hypothesis	space	is	the	set	of	possible	functions	we	consider	

We	were	looking	at	the	space	of	all	Boolean	functions.	Instead	we	choose	
a	hypothesis	space	that	is	smaller	than	the	space	of	all	functions	

For	example:	
• Only	simple	conjunctions	with	4	variables,	there	are	16	conjunctions	
without	negations	

• Simple	disjunction	
• -of- 	rules:	Fix	a	set	of	 	variables.	At	least	 	of	them	must	be	true	
• Linear	functions	
• …	

m n n m
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Which	is	the	better	classifier?

Yes

Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles



vumanfredi@wesleyan.edu 18

Which	is	the	better	classifier?

Yes

Curve	A
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Curve	A	perfectly	
separates	pink	from	
black
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Which	is	the	better	classifier?

Yes

Curve	A Line	B
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Curve	A	perfectly	
separates	pink	from	
black	…	Line	B	separates	
less	well
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Which	is	the	better	classifier?

Yes

Curve	A Line	B
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Pink

Black

Curve	A	and	Line	B	form	
decision	boundaries
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Which	is	the	better	classifier?

Yes

Curve	A Line	B
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Pink

Black

Which	is	is	better?	How	do	we	define	better?	
In	terms	of	generalization	
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Which	is	the	better	classifier?

Yes

Curve	A Line	B
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Pink

Black

Which	is	is	better?	How	do	we	define	better?	
In	terms	of	generalization	

Think	about	overfitting	

Which	curve	runs	the	
risk	of	overfitting?	

Simplicity	versus	
accuracy
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Which	is	the	better	classifier?

Yes

Curve	A Line	B
Suppose	this	is	our	
training	set:	we	have	to	
separate	pink	circles	
from	black	circles

Pink

Black

If	noise	in	data	and	some	points	move,	could	end	up	
on	wrong	side	of	curve.	Curve	may	be	fitting	noise

Think	about	overfitting	

Which	curve	runs	the	
risk	of	overfitting?	

Simplicity	versus	
accuracy
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Linear	classification	vs.	regression

Linear	classification	is	about	predicting	a	discrete	class	label	
▪ +1	or	-1	
▪ SPAM	or	NOT-SPAM	
▪ Or	more	than	two	categories	

Linear	regression	is	about	predicting	real	valued	outputs	
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Similar	argument	for	regression

x x
x x

x x

x
x

F(x)

x

Curve	A
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Similar	argument	for	regression

x x
x x

x x

x
x

F(x)

x

Curve	A

Line	B

Linear	regression	tends	to	make	smaller	errors	on	new	
points	than	polynomial	regression	with	arbitrary	

polynomials	( )x17 + 100x68 + x3
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Similar	argument	for	regression

x x
x x

x x

x
x

F(x)

x

Curve	A

Line	B

In	general,	picking	extremely	expressive	functions	
tends	to	overfit.	One	of	the	simplest	functions	we	

can	pick	are	linear	functions
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Similar	argument	for	regression

x x
x x

x x

x
x

F(x)

x

Curve	A

Line	B

Linear	classifiers	and	regressors:	one	of	most	
studied	class	of	functions	

Why?	Simplicity



OVERVIEW
Linear	Classifiers



Linear	classifiers
Learn	a	linear	function	that	separates	instances	of	different	classes	

A	linear	function	divides	the	coordinate	space	into	two	parts	
‣ Every	point	is	either	on	one	side	of	the	line	(or	plane	or	
hyperplane)	or	the	other	(unless	it	is	exactly	on	the	line	and	
need	to	break	ties)	

This	means	it	can	only	separate	two	classes	
‣ Classification	with	two	classes	is	called	binary	classification	
‣ Conventionally,	one	class	is	called	the	positive	class	and	the	
other	is	the	negative	class	

31
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	 	 	f(x) = mx + b
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slope intercept
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y = 1/2x + 1

“rise”

“run”
slope	=	“rise”	
over	“run”

Slope-intercept	form	of	a	lineSlope-intercept	form	of	a	line

This	equation	uses	 	as	a	parameter.	When	 	and	 ,	
the	point	 	is	the	intersection	of	the	line	with	the	 	axis

x x = 0 y = b
(0,b) y
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General	equation	for	a	line
Views	line	as	a	geometric	object	rather	than	graph	of	function		
‣ Generalizes	to	3+	dimensions	unlike	slope-intercept	form	

	

Can	convert	to	slope-intercept	form	by	solving	for	 	

	

ax + by = c

y

y =
−ax

b
+

c
b

36

,	 ,	and	 	are	real	numbers	
	and	 	are	not	both	zero	

a b c
a b
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What	is	a	linear	classifier?
Instance	space	 	is	 -dimensional:	an	instance	 	is	 -dimensional	vector,	
Output	is	a	label	 	

Linear	Threshold	Units	classify	an	example	 	using	parameters	 	(a	 	
dimensional	vector)	and	 	(a	real	number)	according	to	the	following	
classification	rule	

Output	=	 	=	 	

if	 	
if	 	

	is	called	the	bias	term

X d x ∈ X d
y ∈ {−1,1}

x w d
b

sign(wTx + b) sign(∑
i

wixi + b)

wTx + b ≥ 0 ⇒ y = + 1
wTx + b < 0 ⇒ y = − 1

b

38

Goal	is	to	divide	this	d-dimensional	space	
given	by	the	inputs	into	two	parts

binary	classifier

x =

x1
x2
⋮
xd
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Goal	is	to	divide	this	 -dimensional	space	
given	by	the	inputs	into	two	parts

d
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x =

x1
x2
⋮
xd

w =

w1
w2
⋮
wd



Dot	product
Dot	product	is	defined	as:	

	or	 	where	 	

Measures	amount	one	vector	goes	in	the	direction	of	the	other	

Ex:	
	

	
	

If	dot	product	of	two	vectors	is	zero:	means	the	two	vectors	are	
orthogonal	( 	angle)

wTx w ⋅ x wTx =
k

∑
i=1

wixi

w = < 5.13, 1.08, − 0.03, 7.29 >
x = < x1, x2, x3, x4 >
wTx = 5.13x1 + 1.08x2 − 0.03x3 + 7.29x4

90∘
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Given	input	produce	
one	of	2	possible	labels
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	gives	the	decision	boundary:	a	 	
dimensional	hyperplane	in	the	 -dimensional	instance	

space

wTx + b = 0 d − 1
d

If	2-dimensions,	only	need	a	line	to	separate



The	geometry	of	a	linear	classifier
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An	illustration	in	two	dimensions

     x2

     x1

Two	features	 	and	x1 x2



The	geometry	of	a	linear	classifier
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     x2

     x1

------
- -----

----
---

-

- -

Positive	and	
negative	points

+++
+ +

+
+++

+
+



The	geometry	of	a	linear	classifier
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     x2

     x1

------
- -----

----
---

-

- -

     sgn(b + w1x1 + w2x2)

What	is	linear	classifier	
describing	geometrically?

+++
+ +

+
+++

+
+



The	geometry	of	a	linear	classifier
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     x1

------
- -----

----
---

-

- -

     sgn(b + w1x1 + w2x2)

What	is	linear	classifier	
describing	geometrically?

+++
+ +

+
+++

+
+A	line	(or	plane	or	hyperplane	

in	higher	dimensions)



The	geometry	of	a	linear	classifier
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- -

+++
+ +

+
+++

+
+

Set	equation	to	0	to	get	line	

Hyperplane	is	set	of	values	of	 	and	 	
for	which	dot	product	is	0	

	

Hyperplane	 	is	defined	by	weight	
vector	 	and	bias/offset	 	

x1 x2

H = {x |wTx + b = 0}

H
w b
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The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -
     b + w1x1 + w2x2 < 0

     b + w1x1 + w2x2 > 0

				We	only	care	about	the	sign,	
not	the	magnitude

+++
+ +

+
+++

+
+



The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

Why	set	to	0?		
This	is	the	linear	classifier.		

if	 	then	positive	label	

	if	 	then	negative	label

≥ 0
< 0

+++
+ +

+
+++

+
+



The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

+++
+ +

+
+++

+
+

In	higher	dimensions,	a	linear	
classifier	represents	a	hyperplane	
that	separates	instance	space	

into	two	half-spaces



The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

     [w1, w2]

+++
+ +

+
+++

+
+

Weight	vector	is	orthogonal	to	
decision	boundary



The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

     [w1, w2]

+++
+ +

+
+++

+
+

For	any	two	points	 	and	 	on	the	decision	
boundary:	

	 		and	 	

For	any	vector	( )	on	the	decision	
boundary	(assuming	 	and	 	for	bias):		

	

xA xB

b + wTxA = 0 b + wTxB = 0
xB − xA

w0 x0 = 1
w(xB − xA) = wTxB − wTxA = 0

Weight	vector	is	orthogonal	to	
decision	boundary

If	dot	product	of	two	vectors	is	zero:	means	the	two	vectors	are	orthogonal	( 	angle)90∘

xA

xB



The	geometry	of	a	linear	classifier
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     sgn(b + w1x1 + w2x2)

     b + w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

Distance	of	line	or	hyperplane	
to	origin	is	 	b

+++
+ +

+
+++

+
+

The	bias	term	 	determines	distance	
from	the	decision	boundary	to	the	origin	

For	a	point	 ,	the	distance	to	the	decision	

boundary	is	 		

If	 	is	origin	then	this	is	just	

b

x
wTx + b
| |w | |

x
b

| |w | |

b
| |w | |



Vector	length
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Vector	length,	aka	 	norm	

	

l2

| |x | | = ∑
i

x2
i



Why	is	the	bias	term	needed?
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     sgn(b + w1x1 + w2x2)

     w1x1 + w2x2 = 0

     x2

     x1

------
- -----

----
---

-

- -

+++
+ +

+
+++

+
+

If	b	is	zero,	then	we	are	restrichng	
the	learner	only	to	hyperplanes	

that	go	through	the	origin		

May	not	be	expressive	enough	



Simplifying	notation
We	can	stop	writing	 	at	each	step	using	notational	sugar:	

The	prediction	function	is	 	

Rewrite	 	as	 .	Call	this	 .	Rewrite	 	as	 .	Call	this	 	

Note	that	 	is	the	same	as	 	

The	prediction	function	is	now	 		

In	the	increased	dimensional	space,	the	vector	 	goes	through	the	origin	

We	sometimes	hide	the	bias	 ,	and	instead	fold	the	bias	term	into	the	weights	by	
adding	an	extra	constant	feature.	But	remember	that	it	is	there.	

b
sgn(wTx + b) = sgn(∑

i

wixi + b)

x [x
1] x′ w [w

b] w′ 

wTx + b w′ Tx′ 

sgn(w′ Tx′ )

w′ 

b
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1



Simplifying	notation
We	can	stop	writing	 	at	each	step	using	notational	sugar:	

The	prediction	function	is	 	

Rewrite	 	as	 .	Call	this	 .	Rewrite	 	as	 .	Call	this	 	

Note	that	 	is	the	same	as	 	

The	prediction	function	is	now	 		

In	the	increased	dimensional	space,	the	vector	 	goes	through	the	origin	

We	sometimes	hide	the	bias	 ,	and	instead	fold	the	bias	term	into	the	weights	by	
adding	an	extra	constant	feature.	But	remember	that	it	is	there.	

b
sgn(wTx + b) = sgn(∑

i

wixi + b)

x [x
1] x′ w [w

b] w′ 

wTx + b w′ Tx′ 

sgn(w′ Tx′ )

w′ 

b
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1



Simplifying	notation
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sgn(w′ Tx′ )

w′ 

b
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1



Simplifying	notation
We	can	stop	writing	 	at	each	step	using	notational	sugar:	

The	prediction	function	is	 	

Rewrite	 	as	 .	Call	this	 .	Rewrite	 	as	 .	Call	this	 	

Note	that	 	is	the	same	as	 	

The	prediction	function	is	now	 		

In	the	increased	dimensional	space,	the	vector	 	goes	through	the	origin	
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adding	an	extra	constant	feature.	But	remember	that	it	is	there.	

b
sgn(wTx + b) = sgn(∑

i

wixi + b)

x [x
1] x′ w [w

b] w′ 

wTx + b w′ Tx′ 

sgn(w′ Tx′ )

w′ 

b
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Increases	dimensionality	by	one	

Equivalent	to	adding	a	feature	
that	is	constant:	always	1



Many	standard	learning	algorithms	are	linear	classifiers

Perceptron:	error	driven	learning,	updates	the	hypothesis	if	there	is	an	
error	

Support	vector	machines:	define	a	different	cost	function	that	includes	an	
error	term	and	a	term	that	targets	future	performance	

Naive	Bayes	classifier:	a	simple	linear	classifier	with	a	probabilistic	
interpretation	

Logistic	regression:	another	probabilistic	linear	classifier,	bears	similarity	to	
linear	regression	and	support	vector	machines	
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Many	standard	learning	algorithms	are	linear	classifiers
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error	

Support	vector	machines:	define	a	different	cost	function	that	includes	an	
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linear	regression	and	support	vector	machines	
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In	all	cases,	prediction	will	be	done	with	the	same	rule:	

	wTx + b ≥ 0 ⇒ y = + 1
wTx + b < 0 ⇒ y = − 1



EXAMPLE
Linear	Classifiers



Linear	classifiers:	an	example
Suppose	we	want	to	determine	whether	a	robot	arm	is	defective	or	not	using	
two	measurements:	
1. The	maximum	distance	the	arm	can	reach	 	
2. The	maximum	angle	it	can	rotate	 	

Suppose	we	use	a	linear	decision	rule	that	predicts	defective	if	
	

We	can	apply	this	rule	if	we	have	the	two	measurements	
For	example:	for	a	certain	arm,	if	 	and	 	then	

	

The	arm	would	b	labeled	as	not	defective

d
a

2d + 0.01a ≥ 7

d = 3 a = 200
2d + 0.01a = 8 ≥ 7
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Linear	classifiers:	an	example
Suppose	we	want	to	determine	whether	a	robot	arm	is	defective	or	not	using	
two	measurements:	
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This	rule	is	an	example	of	a	linear	classifier	

Features	are	weighted	and	added	up,	the	sum	is	checked	
against	a	threshold	



Suppose	we	want	to	predict	whether	a	web	user	will	click	
on	an	ad	for	a	refrigerator		

Four	features:	
‣ Recently	searched	“refrigerator	repair”	
‣ Recently	searched	“refrigerator	reviews”		
‣ Recently	bought	a	refrigerator	
‣ Has	clicked	on	any	ad	in	the	recent	past		

These	are	all	binary	features	(values	can	be	either	0	or	1)	

72

Example



Suppose	these	are	the	weights	
‣ Recently	searched	“refrigerator	repair”:	2.0	
‣ Recently	searched	“refrigerator	reviews”:	8.0	
‣ Recently	bought	a	refrigerator:	-15.0	
‣ Has	clicked	on	any	ad	in	the	recent	past:	5.0	
‣ b:	-9.0		

Prediction	function	

73

Example

f(x) = {1 wTx + b ≥ 0
−1 wTx + b < 0



Suppose	these	are	the	weights	
‣ Recently	searched	“refrigerator	repair”:	2.0	
‣ Recently	searched	“refrigerator	reviews”:	8.0	
‣ Recently	bought	a	refrigerator:	-15.0	
‣ Has	clicked	on	any	ad	in	the	recent	past:	5.0	
‣ b:	-9.0		

	
	

	

wTx + b
= 2 ⋅ 0 + 8 ⋅ 1 − 15 ⋅ 0 + 5 ⋅ 0 + −9
= 8 − 9 = − 1
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Example

Prediction:	No



Suppose	these	are	the	weights	
‣ Recently	searched	“refrigerator	repair”:	2.0	
‣ Recently	searched	“refrigerator	reviews”:	8.0	
‣ Recently	bought	a	refrigerator:	-15.0	
‣ Has	clicked	on	any	ad	in	the	recent	past:	5.0	
‣ b:	-9.0		

	
	

	

wTx + b
= 2 ⋅ 1 + 8 ⋅ 1 − 15 ⋅ 0 + 5 ⋅ 0 + −9
= 2 + 8 − 9 = 1
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Example

Prediction:	Yes



Suppose	these	are	the	weights	
‣ Recently	searched	“refrigerator	repair”:	2.0	
‣ Recently	searched	“refrigerator	reviews”:	8.0	
‣ Recently	bought	a	refrigerator:	-15.0	
‣ Has	clicked	on	any	ad	in	the	recent	past:	5.0	
‣ b:	-9.0		

	
	

	

wTx + b
= 2 ⋅ 0 + 8 ⋅ 1 − 15 ⋅ 0 + 5 ⋅ 1 + −9
= 8 + 5 − 9 = 1
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Example

Prediction:	Yes



Suppose	these	are	the	weights	
‣ Recently	searched	“refrigerator	repair”:	2.0	
‣ Recently	searched	“refrigerator	reviews”:	8.0	
‣ Recently	bought	a	refrigerator:	-15.0	
‣ Has	clicked	on	any	ad	in	the	recent	past:	5.0	
‣ b:	-9.0		

	
	

	

wTx + b
= 2 ⋅ 0 + 8 ⋅ 1 − 15 ⋅ 1 + 5 ⋅ 1 + −9
= 8 − 15 + 5 − 9 = − 11
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Example

Prediction:	No
If	someone	bought	a	refrigerator	recently,	they	probably	aren’t	

interested	in	shopping	for	another	one	anything	soon	



EXPRESSIVENESS
Linear	Classifiers



Why	use	linear	classifiers?

Simple	and	expressive	

For	any	new	hypothesis	space,	think	about	which	kinds	of	
functions	does	this	hypothesis	space	include	

Recall:	Decision	trees:	can	express	any	Boolean	function		



Which	Boolean	functions	can	linear	classifiers	represent?

Linear	classifiers	are	an	expressive	hypothesis	class	

If	you	have	only	Boolean	features,	what	Boolean	functions	
are	can	be	captured	by	linear	classifiers?	

Many	Boolean	functions	are	linearly	separable	
– Not	all	though	
– In	comparison,	decision	trees	can	represent	any	
Boolean	function

Function	is	linearly	
separable	if	linear	classier	

that	captures	it



Conjunctions	and	disjunctions
	is	equivalent	to	“ 	whenever	 ”y = x1 ∧ x2 ∧ x3 y = 1 x1 + x2 + x3 ≥ 3

x1 x2 x3 y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Conjunctions	are	linearly	separable	



Conjunctions	and	disjunctions
	is	equivalent	to	“ 	whenever	 ”y = x1 ∧ x2 ∧ x3 y = 1 x1 + x2 + x3 ≥ 3

Enumerate	all	possible	cases	
and	compute	the	function	

The	columns	y	and	sign	are	
the	same,	so	the	two	
functions	are	the	same

x1 x2 x3 y x1	+	x2	+	x3	=	3 sign
0 0 0 0 -3 0
0 0 1 0 -2 0
0 1 0 0 -2 0
0 1 1 0 -1 0
1 0 0 0 -2 0
1 0 1 0 -1 0
1 1 0 0 -1 0
1 1 1 1 0 1

	

What	is	vector	 ?

sgn[x1 + x2 + x3 − 3]
w



Conjunctions	and	disjunctions
	is	equivalent	to	“ 	whenever	 ”y = x1 ∧ x2 ∧ x3 y = 1 x1 + x2 + x3 ≥ 3

x1 x2 x3 y x1	+	x2	+	x3	=	3 sign
0 0 0 0 -3 0
0 0 1 0 -2 0
0 1 0 0 -2 0
0 1 1 0 -1 0
1 0 0 0 -2 0
1 0 1 0 -1 0
1 1 0 0 -1 0
1 1 1 1 0 1

Negations	are	okay	too.	In	
general,	use	 	in	the	linear	
threshold	unit	if	 	is	negated	

	corresponds	
to		

	

1 − x
x

y = x1 ∧ x2 ∧ ¬x3

x1 + x2 + (1 − x3) ≥ 3



How	do	you	know	which	line	is	best?
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     x2

     x1

------
- -----

----
---

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

     1      1

     1     0



How	do	you	know	which	line	is	best?
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     x2

     x1

------
- -----

----
---

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

x1 + x2 ≥ 2      1      1

     1     0

All	lines	are	good	in	terms	of	capturing	
same	Boolean	function	

But	infinite	number	of	functions,	learning	
algorithm	has	to	return	just	one	

Some	of	these	lines	are	better	for	
generalization	if	there	is	noise	in	the	data



m-of-n	functions
m-of-n	rules	

• There	is	a	fixed	set	of	 	variables	

• true	if	and	only	if	at	least	 	of	them	are	true	
• All	other	variables	are	ignored	

Suppose	there	are	five	Boolean	variables:	 	

What	is	a	threshold	unit	that	is	equivalent	to	the	classification	rule	“at	least	2	of	
”	should	be	true?	

n
y = m

x1, x2, x3, x4, x5

{x1, x2, x3}



m-of-n	functions
m-of-n	rules	

• There	is	a	fixed	set	of	 	variables	

• true	if	and	only	if	at	least	 	of	them	are	true	
• All	other	variables	are	ignored	

Suppose	there	are	five	Boolean	variables:	 	

What	is	a	threshold	unit	that	is	equivalent	to	the	classification	rule	“at	least	2	of	
”	should	be	true?	

	

n
y = m

x1, x2, x3, x4, x5

{x1, x2, x3}
x1 + x2 + x3 ≥ 2

x =

x1
x2
x3
x4
x5

w =

w1
w2
w3
w4
w5

=

1
1
1
0
0

b = − 2



Not	all	functions	are	linearly	separable

88

				(The	parity	or		XOR	function)	

     x2

     x1

------
- -----

----
---

-

- -

+++
+ +

+
+++

+
+

+++
+ +

+
+++

+
+

------
- -----

----
---

-

- -

Can’t	draw	a	line	to	
separate	the	two	classes

	
			-1			-1		+1	
	+1		-1			-1		
	-1		+1			-1	
	+1		+1		+1	

x1 x2 f



Not	all	functions	are	linearly	separable
XOR	is	not	linear	

• 	XOR	 	

• 	
• Parity	cannot	be	represented	as	a	linear	classifiers	

• 	if	the	number	of	1s	is	odd	

Many	non-trivial	Boolean	functions	

• Example:	 	
• The	function	is	not	linear	in	the	four	variables	

y = x y
y = (x ∧ ¬y) ∨ (¬x ∧ y)

f(x) = 1

y = (x1 ∧ x2) ∨ (x3 ∧ ¬x4)



Even	these	functions	can	be	made	linear

These	points	are	not	separable	in	1-dimension	by	a	line	

What	is	a	one-dimensional	line,	by	the	way?

x
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The	blown	up	feature	space

The	trick:	use	feature	conjunctions	
Transform	points:	represent	each	point	 	in	2	dimensions	by	x (x, x2)

94

x

x2

-2

(-2,	4)

Now	the	data	is	linearly	separable	in	this	space!



The	blown	up	feature	space

The	trick:	use	feature	conjunctions	
Transform	points:	represent	each	point	 	in	2	dimensions	by	x (x, x2)

95

x

x2

Key	issue:	representation.	What	features	to	use?



Almost	linearly	separable	data
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     sgn(b + w1x1 + w2x2)

     x2

     x1----
-

-

-
-----

----
---

-

-
-

+++
+ +

+
+++

+
+

     b + w1x1 + w2x2 = 0

Many	interesting	functions	are	
linearly	separable	

Even	functions	that	are	not	linearly	
separable	can	be	made	linearly	
separable	by	transforming	the	data	



Almost	linearly	separable	data
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     sgn(b + w1x1 + w2x2)
Many	interesting	functions	are	
linearly	separable	

Even	functions	that	are	not	linearly	
separable	can	be	made	linearly	
separable	by	transforming	the	data	

     x2

     x1----
-

-

-
-----

----
---

-

-
-

+++
+ +

+
+++

+
+

     b + w1x1 + w2x2 = 0

Many	functions	are	also	almost	
linearly	separable	

How	much	noise	do	we	allow	for?



Linear	classifiers:	an	expressive	hypothesis	class
Many	functions	are	linear	

Often	a	good	guess	for	a	hypothesis	space	

Some	functions	are	not	linear	
• The	XOR	function	
•Non-trivial	Boolean	functions	

But	there	are	ways	of	making	them	linear	in	a	higher	dimensional	
feature	space


