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Today’s	Topics

Homework	3	out

– Due	Wednesday,	February	23	by	5p


Learning	decision	trees	(ID3	algorithm)

– Greedy	heuristic	(based	on	information	gain) 
Originally	developed	for	discrete	features


– Some	extensions	to	the	basic	algorithm


Avoiding	overfitting



RECAP
Decision	Trees
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Basic	decision	tree	algorithm:	ID3
ID3( ,	 ):

1.	If	all	examples	have	same	label

Return	a	single	node	tree	with	the	label


2.	Otherwise	

1. 	Create	a	root	node,	R,	for	tree

2. 	 	is	the	attribute	that	best	classifies	 

3. 	For	each	possible	value	 	that	 	can	take	on


• Add	a	new	tree	branch	for	attribute	 	taking	value	 

• Let		 	be	the	subset	of	examples	with	 

• If	 :		add	leaf	node	with	the	common	value	of	label	in	 


																	


											Else:		below	this	branch	add	the	subtree	ID3( ,	 )


4.	Return	root	node	R

S A

Ab ∈ A S
v Ab

Ab v
Sv ⊆ S Ab = v

Sv = ∅ S

Sv A − {Ab}

Input:

S	is	the	set	of	examples

A	is	the	set	of	measured	attributes

Set	is	
empty

Set	is	not	
empty

Different	branches	may	pick	
attributes	in	different	orders!
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Basic	decision	tree	algorithm:	ID3
ID3( ,	 ):

1.	If	all	examples	have	same	label

Return	a	single	node	tree	with	the	label


2.	Otherwise	

1. 	Create	a	root	node,	R,	for	tree

2. 	 	is	the	attribute	that	best	classifies	 

3. 	For	each	possible	value	 	that	 	can	take	on


• Add	a	new	tree	branch	for	attribute	 	taking	value	 

• Let		 	be	the	subset	of	examples	with	 

• If	 :		add	leaf	node	with	the	common	value	of	label	in	 


																	


											Else:		below	this	branch	add	the	subtree	ID3( ,	 )


4.	Return	root	node	R

S A

Ab ∈ A S
v Ab

Ab v
Sv ⊆ S Ab = v

Sv = ∅ S

Sv A − {Ab}

Input:

S	is	the	set	of	examples

A	is	the	set	of	measured	attributes

			Can	you	implement	this?


Everything	is	well	defined,	except	for	“best”
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Picking	the	root/best	attribute
Goal:	have	the	resulting	decision	tree	be	as	small	as	possible


Problem:	finding	the	minimal	decision	tree	consistent	with	data	
is	NP-hard


Solution:	greedy	heuristic	search

- recursive	algorithm	for	a	simple	tree

- cannot	guarantee	optimality

- main	decision	is	to	select	next	attribute	to	split	on

Occam’s	razor:	


Simpler	explanations	are	better.	Here,	simpler	
explanations	correspond	to	smaller	trees


Why?	Fewer	short	hypotheses	than	long	ones	

‣ A	short	hypothesis	that	fits	the	data	is	less	likely	to	be	

a	statistical	coincidence	

‣ Highly	probable	that	a	sufficiently	complex	hypothesis	

will	fit	the	data




Entropy
Entropy	(information,	impurity,	disorder,	randomness)	of	a	set	of	
examples,	 ,	with	respect	to	binary	classification	is


				 :		proportion	of	positive	examples	in	 

				 :		proportion	of	negative	examples	in	 





In	general,	for	a	discrete	random	variable	with	 	possible	values,	with	
probabilities	 ,	the	entropy	is	given	by


	


S

p+ S
p− S

Entropy(S) = H(S) = − p+ log2(p+) − p− log2(p−)

K
{p1, p2, …, pK}

H({p1, p2, …, pK}) = −
K

∑
i

pi log2 pi
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Entropy	is	for	a	random	variable:	how	much	uncertainty	is	
there	in	the	values	random	variable	takes	on?



Information	gain

Information	gain	of	an	attribute	 	is	the	expected	
reduction	in	entropy	caused	by	partitioning	on	this	
attribute





A

Gain(S, A) = Entropy(S) − ∑
v∈Values(A)

|Sv |
|S |

Entropy(Sv)
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Over	distribution	of	
labels	in	data	set	S

Over	distribution	of	labels	
just	in	subset	Sv

Weight	by	fraction	of	
examples	in	subset



Information	gain

Information	gain	of	an	attribute	 	is	the	expected	
reduction	in	entropy	caused	by	partitioning	on	this	
attribute





A

Gain(S, A) = Entropy(S) − ∑
v∈Values(A)

|Sv |
|S |

Entropy(Sv)
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Over	distribution	of	
labels	in	data	set	S

Over	distribution	of	labels	
just	in	subset	Sv

Weight	by	fraction	of	
examples	in	subset

If	splitting	on	 	has	high	gain,	then	
removes	the	most	uncertainty

A



Information	gain

Information	gain	of	an	attribute	 	is	the	expected	
reduction	in	entropy	caused	by	partitioning	on	this	
attribute





A

Gain(S, A) = Entropy(S) − ∑
v∈Values(A)

|Sv |
|S |

Entropy(Sv)
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Entropy	before	splitting					-						Entropy	after	splitting

Tells	us	how	important	a	given	attribute	of	the	
feature	vector	is
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples

																	<		(A=0,B=1),	-		>:				50	examples

																	<		(A=1,B=0),	-		>:						3	examples

																	<		(A=1,B=1),	+	>:		100	examples


What	should	be	the	first	attribute	we	select?


																																																																																									
 -

A

+ -

1 0

1 0
B 100

3100

Suppose	we	split	on	A:	

‣ A=0	examples:	all	have	have	same	-	label

‣ A=1	examples:	all	but	3	have	same	+	label


Reduction	in	entropy	is:	





										

100
203

H(100,0) +
103
203

H(100,3)

≈
100
203

× 0 +
103
203

× 0 ≈ 0
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples
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What	should	be	the	first	attribute	we	select?


																																																																																									
 -

A

+ -

1 0

1 0
B 100
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Suppose	we	split	on	A:	

‣ A=0	examples:	all	100	have	have	same	-	label

‣ A=1	examples:	all	but	3	have	same	+	label


Reduction	in	entropy	is:	





										

100
203
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203
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203
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples
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203

× 0 +
103
203

× 0 ≈ 0
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples

																	<		(A=0,B=1),	-		>:				50	examples

																	<		(A=1,B=0),	-		>:						3	examples

																	<		(A=1,B=1),	+	>:		100	examples


What	should	be	the	first	attribute	we	select?


																																																																																									


Suppose	we	split	on	B:	

‣ B=0	examples:	53	have	-	label,	50	have	+	label

‣ B=1	examples:	50	have	-	label,	100	have	+	

label


Reduction	in	entropy	is:	





										

53
203

H(53,50) +
50

203
H(50,100)

> 0

B

-
A

-

1 0

1 0

100

53

50+
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples

																	<		(A=0,B=1),	-		>:				50	examples

																	<		(A=1,B=0),	-		>:						3	examples

																	<		(A=1,B=1),	+	>:		100	examples


What	should	be	the	first	attribute	we	select?


																																																																																									


Suppose	we	split	on	B:	

‣ B=0	examples:	53	have	-	label,	0	have	+	label

‣ B=1	examples:	50	have	-	label,	100	have	+	

label


Reduction	in	entropy	is:	





										

53
203

H(53,50) +
50

203
H(50,100)

> 0

B

-
A

-

1 0

1 0

100

53

50+
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples

																	<		(A=0,B=1),	-		>:				50	examples

																	<		(A=1,B=0),	-		>:						3	examples
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Picking	the	root/best	attribute
Consider	data	with	two	Boolean	attributes	(A,B)

															<		(A=0,B=0),	-		>:				50	examples

																	<		(A=0,B=1),	-		>:				50	examples

																	<		(A=1,B=0),	-		>:						3	examples

																	<		(A=1,B=1),	+	>:		100	examples


What	should	be	the	first	attribute	we	select?


																																																																																									


B

-
A

+ -

1 0

1 0

-

A

+ -

1 0

1 0
B

Explains	why	A	is	split	is	better	than	B	as	split!

100

3100 100

53

50
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The	tennis	example	again

Outlook	

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,	2-

Sunny
1,2,8,9,11

4+,	0-2+,	3-
Yes? ?	

O T H	 W	 Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Continue	until	either:	

Every	attribute	is	included	in	path	


OR

All	examples	in	the	leaf	have	same	label
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An	illustrative	example

Outlook	

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,	2-

Sunny
1,2,8,9,11

4+,	0-2+,	3-
Yes? ?	








Gain(Ssunny, Temp) = .97 − 0 − (2/5)1 = .57
Gain(Ssunny,Humidity) = .97 − (3/5)0 − (2/5)0 = .97
Gain(Ssunny,Wind) = .97 − (2/5)1 − (3/5).92 = .02

Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes

Subset	of	data,	S,	for	
which	Outlook	is	Sunny

Entropy	over	S

Hot,	Cool	all	same	label
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An	illustrative	example
Outlook	

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,	2-

Sunny
1,2,8,9,11

4+,	0-2+,	3-
Yes ?	Humidity

NormalHigh
No Yes
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An	illustrative	example
Outlook	

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,	2-

Sunny
1,2,8,9,11

4+,	0-2+,	3-
YesHumidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes



Hypothesis	space	in	decision	tree	induction
Search	over	decision	trees,	which	can	represent	all	possible	discrete	functions	
(has	pros	and	cons)


Goal:	to	find	the	best	decision	tree

▪ Best	could	be	“smallest	depth”

▪ Best	could	be	“minimizing	the	expected	number	of	tests"


Finding	a	minimal	decision	tree	consistent	with	a	set	of	data	is	NP-hard

▪ Search	over	space	of	all	possible	decision	trees	 	search	over	space	of	

all	possible	boolean	functions

▪ Very	large	space:	with	 	boolean	features	then	 	trees


→

N 2N

22



How	ID3	searches/learns

ID3	performs	a	greedy	heuristic	search	(hill	climbing	without	backtracking)

▪ Never	go	back	and	change	root	or	parent	to	a	different	feature

▪ Heuristic	search:	no	guarantee	that	smaller	possible	tree


Makes	statistically	based	decisions	using	all	data,	i.e.,	ID3	is	batch	algorithm

▪ If	you	are	given	another	example,	you	cannot	incrementally	change	

tree,	you	need	to	rerun	ID3	from	scratch	


ID3	will	find	tree	that	represents	your	data	

▪ If	your	data	is	noisy,	learned	tree	will	reflect	that


Decision	tree	lets	you	visualize	the	learned	model

▪ Most	algorithms	don’t	let	you	do	this

23



Homework	3	discussion


Decision	tree	questions?

Python	questions?




3	min:	discussion	


How	are	we	evaluating	decision	tree	performance?




3	min:	discussion	


How	are	we	evaluating	decision	tree	performance?


Information	gain	is	heuristic	to	help	us	search	through	
hypothesis	space.	But	we	ultimately	care	about	test	

examples	correctly	labeled,	or	not.




Summary:	learning	decision	trees
1.	Representation:	what	are	decision	trees?


▪ A	hierarchical	data	structure	that	represents	data


2.	Algorithm:	learning	decision	trees

▪ The	ID3	algorithm:	a	greedy	heuristic


‣ If	all	examples	have	the	same	label,	create	a	leaf	with	that	label

‣ Otherwise,	find	the	“most	informative”	attribute	and	split	the	
data	for	different	values	of	that	attributes


‣ Recurse	on	the	splits


3.	Some	extensions
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Summary:	learning	decision	trees
1.	Representation:	what	are	decision	trees?


▪ A	hierarchical	data	structure	that	represents	data


2.	Algorithm:	learning	decision	trees

▪ The	ID3	algorithm:	a	greedy	heuristic


‣ If	all	examples	have	the	same	label,	create	a	leaf	with	that	label

‣ Otherwise,	find	the	“most	informative”	attribute	and	split	the	
data	for	different	values	of	that	attributes


‣ Recurse	on	the	splits


3.	Some	extensions	+	overfitting
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TIPS	AND	TRICKS
Decision	Trees



Tips	and	tricks

1. Decision	tree	variants


2. Handling	examples	with	missing	feature	values


3. Non-Boolean	features


4. Avoiding	overfitting
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1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?	3/4
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What	if	we	have	another	way	to	quantify	disorder?

Can	use	that	measure	to	pick	best	attribute	instead




1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?	3/4
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What	if	we	have	another	way	to	quantify	disorder?

Can	use	that	measure	to	pick	best	attribute	instead




1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?


‣ Answer:	1/4
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1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
label	were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?


‣ Answer:	1/4
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1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
label	were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?


‣ Answer:	1/4
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1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


MajorityError

‣ Suppose	the	tree	was	not	grown	below	this	node	and	the	most	frequent	
label	were	chosen,	what	would	be	the	error?


‣ Suppose	at	some	node,	there	are	15+	and	5-	examples.	What	is	the	
MajorityError?


‣ Answer:	1/4
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1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


Gini	Index	(variation	of	entropy)

‣ how	often	is	a	randomly	chosen	element	from	the	set	of	examples	
incorrectly	labeled	if	it	was	randomly	labeled	according	to	the	
distribution	of	labels	in	the	subset?	


37

Probability	of	picking	
example	with	label	i

Probability	of	not	picking	
example	with	label	i

	Gini(S) =
|Labels|

∑
i=0

pi(1 − pi) = 1 −
|Labels|

∑
i=1

p2
i



1.	Variants	of	information	gain	
Information	gain	is	defined	using	entropy	to	measure	the	disorder/impurity	of	
the	labels


There	are	other	ways	to	measure	disorder


Gini	Index	(variation	of	entropy)

‣ how	often	is	a	randomly	chosen	element	from	the	set	of	examples	
incorrectly	labeled	if	it	was	randomly	labeled	according	to	the	
distribution	of	labels	in	the	subset?	
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If	no	mistakes,	sum	is	0

	Gini(S) =
|Labels|

∑
i=0

pi(1 − pi) = 1 −
|Labels|

∑
i=1

p2
i

Split	on	feature	with	lowest	Gini	Index



Information	gain	vs.	Gini	index
Information	gain


‣ favors	smaller	partitions	with	distinct	values


Gini	Index

‣ favors	larger	partitions	and	easy	to	implement	(no	logarithms	

to	compute)


For	most	data,	results	will	be	the	same
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1.	Variants	of	information	gain

Let	 	be	the	fraction	of	positive	examples.	Then	 	is	the	fraction	
of	negative	examples

p 1 − p

40



1.	Variants	of	information	gain

Let	 	be	the	fraction	of	positive	examples.	Then	 	is	the	fraction	
of	negative	examples

p 1 − p

41

Each	measure	peaks	
when	uncertainty	is	
highest	(i.e.,	p	=	0.5)



1.	Variants	of	information	gain

Let	 	be	the	fraction	of	positive	examples.	Then	 	is	the	fraction	
of	negative	examples

p 1 − p

42

Lowest	(zero)	when	
uncertainty	is	lowest	
(i.e.,	p=0	or	p=1)



1.	Variants	of	information	gain

Let	 	be	the	fraction	of	positive	examples.	Then	 	is	the	fraction	
of	negative	examples

p 1 − p

43

Each	of	these	work	like	entropy


They	can	replace	entropy	in	the	
definition	of	information	gain



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	training	time?	

Option	1:	Ignore	the	problem!	

Downside?	Data	is	hard	to	get

44

Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes
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Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
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11 Sunny Mild Normal Strong Yes
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Suppose	an	example	is	missing	the	value	of	an	attribute.
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Option	1:	Ignore	the	problem!	

Downside?	Data	is	hard	to	get
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Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	training	time?	

Option	2:	Complete	the	example


Use	most	common	value	of	attribute	in	data,	or	use	most																												
common	value	of	attribute	among	all	examples	with	same	output


Downside?	We	don’t	care	about	predicting	the	value,	we																																			
care	about	predicting	the	label 47

Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes

High



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	training	time?	

Option	2:	Complete	the	example


Use	most	common	value	of	attribute	in	data,	or	use	most																												
common	value	of	attribute	among	all	examples	with	same	output


Downside?	We	don’t	care	about	predicting	the	value,	we																																			
care	about	predicting	the	label 48

Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes

High



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	training	time?	


Option	3:	Use	fractional	counts	of	attribute	values

Downside?	Need	to	update	entropy	calculation	to	handle	
fractional	counts,	makes	things	more	complicated
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Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes

e.g.,	Outlook	=	{5/14	Sunny,	4/14	Overcast,	5/14	Rain}



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	test	time	if	attribute	is	missing	value?	


Use	the	same	method:	choose	most	common																																				
label	or	any	of	the	other	options
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Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes



2.	Missing	feature	values
Suppose	an	example	is	missing	the	value	of	an	attribute.


What	can	we	do	at	test	time	if	attribute	is	missing	value?	


Use	the	same	method:	choose	most	common																																				
label	or	any	of	the	other	options
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Day Outlook Temperature Humidity Wind Play	Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild ??? Weak No
9 Sunny Cool Normal Weak Yes
11 Sunny Mild Normal Strong Yes



3.	Non-Boolean	feature	values
Suppose	features	can	take	multiple	values	…


We	have	seen	one	edge	per	split

‣ i.e.,	a	multi-way	split

52

Overcast RainSunny

Outlook



3.	Non-Boolean	feature	values
Suppose	features	can	take	multiple	values	…


Another	option

‣ Make	the	attributes	Boolean	by	testing	for	each	value

‣ E.g.,	outlook	is	sunny	can	be	expressed	as	combination	of	3	

booleans

53

→

{

Outlook:Sunny=True

Outlook:Overcast=False

Outlook:Rain=False


}

Convert	Outlook=Sunny	



3.	Non-Boolean	feature	values
Suppose	features	can	take	multiple	values	…


Another	option

‣ Make	the	attributes	Boolean	by	testing	for	each	value

‣ E.g.,	outlook	is	sunny	can	be	expressed	as	combination	of	3	

booleans

54

→

{

Outlook:Sunny=True

Outlook:Overcast=False

Outlook:Rain=False


}

Convert	Outlook=Sunny	

Allows	reuse	of	binary	tree	code,	for	example



3.	Non-Boolean	feature	values
Suppose	features	can	take	multiple	values	…


Another	option

‣ Make	the	attributes	Boolean	by	testing	for	each	value

‣ E.g.,	outlook	is	sunny	can	be	expressed	as	combination	of	3	

booleans

55

→

{

Outlook:Sunny=True

Outlook:Overcast=False

Outlook:Rain=False


}

Convert	Outlook=Sunny	

For	numeric	features,	use	thresholds	or	ranges	to	get	Boolean/
discrete	alternatives



OVERFITTING
Decision	Trees



Overfitting
Goal	for	today


‣ What	is	overfitting?

‣ How	we	can	combat	overfitting	for	decision	trees?


Keep	in	mind

‣ Overfitting	is	an	issue	not	just	to	decision	trees	but	pretty	

much	every	single	machine	learning	algorithm

57



The	“First	Bit”	function

A	Boolean	function	with	 	inputs

Simply	returns	the	value	of	the	first	input,	all	others	irrelevant

n

58

If	 :	returns	value	of	 

If	 :	returns	value	of	 





n = 2 X0
n = 100 X0

⋮



	is	irrelevant

Y = X0
X1

X0 X1 Y
F F F
F T F

T F T

T T T



The	“First	Bit”	function

A	Boolean	function	with	 	inputs

Simply	returns	the	value	of	the	first	input,	all	others	irrelevant

n
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What	is	the	decision	tree	
for	this	function?



	is	irrelevant

Y = X0
X1

X0 X1 Y
F F F
F T F

T F T

T T T



The	“First	Bit”	function

A	Boolean	function	with	 	inputs

Simply	returns	the	value	of	the	first	input,	all	others	irrelevant

n
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What	is	the	decision	tree	
for	this	function?



	is	irrelevant

Y = X0
X1

X0 X1 Y
F F F
F T F

T F T

T T T
F T

X0

TF



The	“First	Bit”	function

A	Boolean	function	with	 	inputs

Simply	returns	the	value	of	the	first	input,	all	others	irrelevant

n
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What	is	the	decision	tree	
for	this	function?



	is	irrelevant

Y = X0
X1

X0 X1 Y
F F F
F T F

T F T

T T T
F T

X0

TF

Convince	yourself	that	ID3	
will	generate	this	tree



The	best	case	scenario:	perfect	data

What	if	instead	of	2	bits	we	have	 	bits


Suppose	we	have	all	 	examples	for	training.	What	will	the	error	be	
on	any	future	examples?


Zero!	Because	we	have	seen	every	possible	input!


And	the	decision	tree	can	represent	the	function	and	ID3	will	build	a	
consistent	tree

n

2n
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The	best	case	scenario:	perfect	data

What	if	instead	of	2	bits	we	have	 	bits


Suppose	we	have	all	 	examples	for	training.	What	will	the	error	be	
on	any	future	examples?


Zero!	Because	we	have	seen	every	possible	input!


And	the	decision	tree	can	represent	the	function	and	ID3	will	build	a	
consistent	tree

n

2n
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The	best	case	scenario:	perfect	data

What	if	instead	of	2	bits	we	have	 	bits


Suppose	we	have	all	 	examples	for	training.	What	will	the	error	be	
on	any	future	examples?


Zero!	Because	we	have	seen	every	possible	input!


And	the	decision	tree	can	represent	the	function	and	ID3	will	build	a	
tree	consistent	with	training	set,	regardless	of	noise	in	the	data

n

2n

64

Whatever	label	your	training	set	
assigns	to	example	will	be	label	

that	ID3	assigns



The	best	case	scenario:	perfect	data

What	if	instead	of	2	bits	we	have	 	bits


Suppose	we	have	all	 	examples	for	training.	What	will	the	error	be	
on	any	future	examples?


Zero!	Because	we	have	seen	every	possible	input!


And	the	decision	tree	can	represent	the	function	and	ID3	will	build	a	
tree	consistent	with	training	set,	regardless	of	noise	in	the	data

n

2n
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Perfect	data:	training	error	is	zero

Future	generalization	error	is	also	zero:	because	you’ve	seen	all	
of	the	examples	because	the	data	is	perfect



Problem
What	if	data	is	noisy?	After	all,	nature	is	noisy!


Error	when	collecting	data	(e.g.,	faulty	sensor)

Error	labeling	data	(e.g.,	label	as	cat	but	not	a	cat)

Error	introduced	later	(e.g.,	spreadsheet	messes	up	the	data)


Only	one	way	of	being	right	but	infinite	ways	of	being	wrong

66



Noisy	data

What	if	the	data	is	noisy?	And	we	have	all	 	examples2n
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X0 X1 X2 Y

F F F F

F F T F

F T F F

F T T F

T F F T

T F T T

T T F T

T T T T



Noisy	data

What	if	the	data	is	noisy?	And	we	have	all	 	examples2n
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Suppose,	the	outputs	of	
both	training	and	test	sets	
are	randomly	corrupted


Train	and	test	sets	are	no	
longer	identical


Both	have	noise,	possibly	
different


Prediction	accuracy	drops	
because	there	is	noise!


X0 X1 X2 Y

F F F F

F F T F

F T F F

F T T F

T F F T

T F T T

T T F T

T T T T

T

F



Noisy	data

What	if	the	data	is	noisy?	And	we	have	all	 	examples2n
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Suppose,	the	outputs	of	
both	training	and	test	sets	
are	randomly	corrupted


Train	and	test	sets	are	no	
longer	identical


Both	have	noise,	possibly	
different


Prediction	accuracy	drops	
because	there	is	noise!


X0 X1 X2 Y

F F F F

F F T F

F T F F

F T T F

T F F T

T F T T

T T F T

T T T T

T

F



Suppose	output	corrupted	with	probability	0.25

70

Suppose	data	is	noisy	and	we	have	all	 	examples2n

Error	bars	are	generated	by	running	the	same	
experiment	multiple	times	for	the	same	setting

All	possible	functions	for	2	to	15	
features,	where	only	first	feature	
is	relevant	(i.e.,	indicates	label)



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

Error ≈ 0.375



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

We	can	analytically	compute	test	error	in	this	case

Correct	prediction:

P(Training	example	uncorrupted	AND	test	example	uncorrupted)	


=	 

P(Training	example	corrupted	AND	test	example	corrupted)


	= 

P(Correct	prediction)	=	 	


Incorrect	prediction:

P(Training	example	uncorrupted	AND	test	example	corrupted)	


=	 	

P(Training	example	corrupted	AND	test	example	uncorrupted)	


= 

P(Incorrect	prediction)	=	

0.75 × 0.75 = 0.5625

0.25 × 0.25 = 0.0625
0.625

0.75 × 0.25 = 0.1875

0.25 × 0.75 = 0.1875
0.375

Error ≈ 0.375

Because	output	corrupted	
with	probability	0.25



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

We	can	analytically	compute	test	error	in	this	case

Correct	prediction:

P(Training	example	uncorrupted	AND	test	example	uncorrupted)	


=	 

P(Training	example	corrupted	AND	test	example	corrupted)


	= 

P(Correct	prediction)	=	 	


Incorrect	prediction:

P(Training	example	uncorrupted	AND	test	example	corrupted)	


=	 	

P(Training	example	corrupted	AND	test	example	uncorrupted)	


=	 

P(Incorrect	prediction)	=	

0.75 × 0.75 = 0.5625

0.25 × 0.25 = 0.0625
0.625

0.75 × 0.25 = 0.1875

0.25 × 0.75 = 0.1875
0.375

Error ≈ 0.375



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

What	about	the	training	accuracy?

Error ≈ 0.375

Training	accuracy	=	100%




Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

What	about	the	training	accuracy?

Error ≈ 0.375

Training	accuracy	=	100%


Because	the	learning	algorithm	will	find	a	tree	that	
agrees	with	the	data,	regardless	of	noise



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

Then,	why	is	the	classifier	not	perfect?

Error ≈ 0.375



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

Then,	why	is	the	classifier	not	perfect?

Error ≈ 0.375

It	did	not	learn	the	first	bit	function.	It	learned	the	
noise:	for	some	examples,	label	was	corrupted



Suppose	output	corrupted	with	probability	0.25
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Suppose	data	is	noisy	and	we	have	all	 	examples2n

Then,	why	is	the	classifier	not	perfect?

Error ≈ 0.375

It	did	not	learn	the	first	bit	function.	It	learned	the	
noise:	for	some	examples,	label	was	corrupted

This	is	what	we	call	overfitting.	The	classifier	overfits	
the	training	data



You	can	think	of	overfitting	as	when	the	learning	algorithm	
finds	a	hypothesis	that	fits	the	noise	in	the	data


‣ Irrelevant	attributes	or	noisy	examples	influence	the	
choice	of	the	hypothesis


Why	is	this	bad?

‣ May	lead	to	poor	performance	on	future	examples


Overfitting

79

Every	learning	algorithm	needs	to	have	a	
way	of	combatting	overfitting




You	can	think	of	overfitting	as	when	the	learning	algorithm	
finds	a	hypothesis	that	fits	the	noise	in	the	data


‣ Irrelevant	attributes	or	noisy	examples	influence	the	
choice	of	the	hypothesis


Why	is	this	bad?

‣ May	lead	to	poor	performance	on	future	examples


Overfitting
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Every	learning	algorithm	needs	to	have	a	
way	of	combatting	overfitting




One	definition	of	overfitting
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Suppose	our	data	( )	is	generated	from	a	probability	
distribution	 .	Suppose	we	are	using	a	hypothesis	space	 


Two	kinds	of	errors:

Training	error	for	hypothesis	 

‣ Fraction	of	training	examples	on	which	hypothesis	 	makes	

a	mistake

True	error	for	 

‣ Expected	error	that	hypothesis	 	makes	on	the	entire	set	

of	examples	that	exist	…	even	examples	that	we	have	not	
seen


‣ Mathematical	concept:	we	cannot	calculate

X, Y
D(X, Y ) H

h ∈ H : errortrain(h)
h

h ∈ H : errorD(h)
h
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One	definition	of	overfitting
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Suppose	our	data	( )	is	generated	from	a	probability	
distribution	 .	Suppose	we	are	using	a	hypothesis	space	 


Two	kinds	of	errors:

Training	error	for	hypothesis	 

‣ Fraction	of	training	examples	on	which	hypothesis	 	makes	

a	mistake

True	error	for	 

‣ Expected	error	that	hypothesis	 	makes	on	entire	set	of	

examples	that	exist	…	even	examples	we	have	not	seen

‣ Mathematical	concept:	we	cannot	calculate

X, Y
D(X, Y ) H

h ∈ H : errortrain(h)
h

h ∈ H : errorD(h)
h



One	definition	of	overfitting
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Suppose	our	data	( )	is	generated	from	a	probability	
distribution	 .	Suppose	we	are	using	a	hypothesis	space	 


Two	kinds	of	errors:

Training	error	for	hypothesis	 

‣ Fraction	of	training	examples	on	which	hypothesis	 	makes	

a	mistake

True	error	for	 

‣ Expected	error	that	hypothesis	 	makes	on	entire	set	of	

examples	that	exist	…	even	examples	we	have	not	seen

‣ Mathematical	concept:	we	cannot	calculate

X, Y
D(X, Y ) H

h ∈ H : errortrain(h)
h

h ∈ H : errorD(h)
h



One	definition	of	overfitting
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Training	error	for	hypothesis	 

True	error	for	 


A	hypothesis	 	overfits	the	training	data	if	there	is	another	hypothesis	
	such	that


1. 	has	lower	training	error	than	the	competing	hypothesis	 	but


‣ 


2. 	generalizes	better	than	 


‣ 


h ∈ H : errortrain(h)
h ∈ H : errorD(h)

h
h′￼

h h′￼

errortrain(h) < errortrain(h′￼)

h′￼ h
errorD(h) < errorD(h′￼)



One	definition	of	overfitting
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Training	error	for	hypothesis	 

True	error	for	 


A	hypothesis	 	overfits	the	training	data	if	there	is	another	hypothesis	
	such	that


1. 	has	lower	training	error	than	the	competing	hypothesis	 	but


‣ 


2. 	generalizes	better	than	 


‣ 


h ∈ H : errortrain(h)
h ∈ H : errorD(h)

h
h′￼

h h′￼

errortrain(h) < errortrain(h′￼)

h′￼ h
errorD(h) > errorD(h′￼)



Decision	trees	will	overfit
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Decision	trees	will	overfit
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Stop	growing	
tree	here

Overfitting


