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Today’s	Topics

Homework	1	out

– Due	Wed.,	February	9	by	5p


Using	supervised	learning

1. What	is	our	instance	space?

2. What	is	our	label	space?

3. What	is	our	hypothesis	space?



Recap	



Instances	and	Labels

:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X

E.g.,	the	set	of	all	possible	
names,	documents,	sentences,	
images,	emails,	…	

E.g.,	{Spam,	Not-Spam},	{+,	-},	…

:	Label	space


The	set	of	all	
possible	labels

Y

:	instance	label


:	individual	label	in	 


							 


Y
y Y

y ∈ Y

:	instance	space


:	individual	example	in	 





X
x X

x ∈ X



vumanfredi@wesleyan.edu

Target	function

The	goal	of	learning:	find	this	target	function

Target	function	

y = f (x)

:	Label	space


The	set	of	all	
possible	labels

Y

Learning	is	search	over	functions

We	need	to	search	over	the	set	of	possible	functions	that	exist	to	find	
the	one	function	that	maps	instances	to	labels	in	the	way	we	want

:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X



Supervised	learning

:	Label	space


The	set	of	all	
possible	labels

Y

Learning	algorithm	only	sees	examples	
of	the	function	 	in	action	f

Target	function	

y = f (x)

Labeled	training	data

Learning	
algorithm A	learned	function	g : X → Y

This	is	the	training	phase






x1, f(x1)
x2, f(x2)
x3, f(x3)

⋮
xn, f(xn)

:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X



Supervised	learning:	evaluation

:	Label	space


The	set	of	all	
possible	labels

Y
Target	function	


y = f (x)

Learned	function	

y = g(x)

Draw	test	example	
x ∈ X

g(x)

f (x)
Are	they	different?

How	different?

Apply	model	to	many	test	examples	and	compare	to	the	target’s	prediction

Aggregate	these	results	to	get	a	quality	measure

:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X



The	general	setting	for	supervised	learning
Given:		training	examples	that	are	pairs	of	the	form	(x, f(x))

The	goal	of	learning:	use	the	training	examples	to	find	a	good	
approximation	for	f

The	label	determines	the	kind	of	problem	we	have


• Binary	classification:	label	space	=	 


• Multiclass	classification:	label	space	=	 


• Regression:	label	space	 	


{−1,1}
{1,2,3,…, K}

= ℜ



The	general	setting	for	supervised	learning
Given:		training	examples	that	are	pairs	of	the	form	(x, f(x))

Typically	the	input	 	is	represented	as	feature	vectors

•E.g.,:	 	or	 	( -dimensional	vectors)

•A	deterministic	mapping	from	instances	in	your	
problem	(e.g.,	news	articles)	to	features	

x
x ∈ {0,1}d x ∈ ℜd d

The	function	 	
is	unknown

f

Instances:	real	things	to	categorize,	like	emails,	articles,	pictures


Features:	“interesting”	attributes	of	the	instances,	like	1	if	email	contains	word	
free,	0	otherwise,	pixel	patterns,	…


Features	form	a	vector	space:	 -dimensional	vectors	form	a	 -dimensional	vector	
space.	Each	number	in	vector	is	a	single	dimension	that	captures	one	feature


d d



Using	supervised	learning

1. What	is	our	instance	space?

• What	are	the	inputs	to	the	problem?	What	are	the	features?


2. What	is	our	label	space?

• What	kind	of	learning	task	are	we	dealing	with?


3. What	is	our	hypothesis	space?

• What	functions	should	the	learning	algorithm	search	over?


4. What	is	our	learning	algorithm?

• How	do	we	learn	the	model	from	the	labeled	data?


5. What	is	our	loss	function	or	evaluation	metric?

• How	do	we	measure	success?	What	drives	learning?

Much	of	the	rest	
of	the	semester	

We	should	be	able	to	specify



EXAMPLES
Using	Supervised	Learning



vumanfredi@wesleyan.edu

1.	The	instance	space	X

E.g.,	the	set	of	all	possible	
names,	documents,	sentences,	
images,	emails,	…	

E.g.,	{Spam,	Not-Spam},	{+,	-},	…

:	Label	space


The	set	of	all	
possible	labels

Y

Designing	an	appropriate	feature	representation	
of	the	instance	space	is	crucial


Instances	 	are	defined	by	features/
attributes


Features	could	be	Boolean

• Example:	does	the	email	contain	the	word	
“free”


Features	could	be	real-valued

• Example:	what	is	the	height	of	the	person?

• Example:	what	was	the	stock	price	yesterday?


Features	could	be	hand-crafted	or	themselves	learned

x ∈ X

What	might	features	be?

:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X
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1.	The	instance	space	X

E.g.,	the	set	of	all	possible	
names,	documents,	sentences,	
images,	emails,	…	

E.g.,	{Spam,	Not-Spam},	{+,	-},	…

:	Label	space


The	set	of	all	
possible	labels

Y

Designing	an	appropriate	feature	representation	
of	the	instance	space	is	crucial


Instances	 	are	defined	by	features/
attributes


Features	could	be	Boolean

• Example:	does	the	email	contain	the	word	
“free”


Features	could	be	real-valued

• Example:	what	is	the	height	of	the	person?

• Example:	what	was	the	stock	price	yesterday?


Features	could	be	hand-crafted	or	themselves	learned

x ∈ X:	Instance	space


The	set	of	all	possible	
examples	to	be	
classified	

X



Features	are	supposed	to	capture	all	of	the	information	needed	
for	a	learned	system	to	make	its	prediction	


– Think	of	them	as	the	sensory	inputs	for	the	learned	system


Not	all	information	about	the	instances	is	necessary	or	relevant

– Bad	features	could	even	confuse	a	learner
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1.	The	instance	space	X



Instances	as	feature	vectors

An	input	to	the	problem	
(e.g.,	emails,	names,	images)

A	feature	vectorFeature	
function



Instances	as	feature	vectors

An	input	to	the	problem	
(e.g.,	emails,	names,	images)

A	feature	vectorFeature	
function

Feature	functions,	also	known	as	feature	extractors

• Often	deterministic,	but	could	also	be	learned

• Convert	the	examples	to	a	collection	of	attributes	(typically	
thought	of	as	high-dimensional	vectors)


Important	part	of	the	design	of	a	learning	based	solution	




Feature	functions	convert	inputs	to	vectors


The	input	space	 	is	a	 -dimensional	vector	space	(e.g.,	 	or	 )


– Each	dimension	is	one	feature,	we	have	 	features	in	all


Each	 	is	a	feature	vector


– Each	 	is	a	point	in	the	vector	space	with	 	
dimensions	(hence	the	boldface	 )


X d ℜd {0,1}d

d

x ∈ X
x = [x1, x2, …, xd] d

x
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Instances	as	feature	vectors



Feature	functions	convert	inputs	to	vectors


The	input	space	 	is	a	 -dimensional	vector	space	(e.g.,	 	or	 )


– Each	dimension	is	one	feature,	we	have	 	features	in	all


Each	 	is	a	feature	vector


– Each	 	is	a	point	in	the	vector	space	with	 	
dimensions	(hence	the	boldface	 )


X d ℜd {0,1}d

d

x ∈ X
x = [x1, x2, …, xd] d

x
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Instances	as	feature	vectors



Feature	functions	convert	inputs	to	vectors


The	input	space	 	is	a	 -dimensional	vector	space	(e.g.,	 	or	 )


– Each	dimension	is	one	feature,	we	have	 	features	in	all


Each	 	is	a	feature	vector


– Each	 	is	a	point	in	the	vector	space	with	 	
dimensions	(hence	the	boldface	 )


X d ℜd {0,1}d

d

x ∈ X
x = [x1, x2, …, xd] d

x
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Instances	as	feature	vectors



Feature	functions	convert	inputs	to	vectors


The	input	space	 	is	a	 -dimensional	vector	space	(e.g.,	 	or	 )


– Each	dimension	is	one	feature,	we	have	 	features	in	all


Each	 	is	a	feature	vector


– Each	 	is	a	point	in	the	vector	space	with	 	
dimensions	(hence	the	boldface	 )


X d ℜd {0,1}d

d

x ∈ X
x = [x1, x2, …, xd] d

x
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Instances	as	feature	vectors

x2

x1

x = [x1, x2]
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Feature	functions	produce	feature	vectors

What	were	some	features	for	the	badges	game?

Names ?Feature	
function



Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					a	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]


→ … …
→ … …
→ … …
→ … …
→ … …
→ … …
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3min:	Think	about	we	might	represent	this	feature

using	a	feature	vector



Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					a	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]


→ … …
→ … …
→ … …
→ … …
→ … …
→ … …
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Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					a	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]


→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

24

What	is	the	dimensionality	of	
these	feature	vectors?


26	(one	dimension	per	letter)



Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					a	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]


→ … …
→ … …
→ … …
→ … …
→ … …
→ … …
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What	is	the	dimensionality	of	
these	feature	vectors?


26	(one	dimension	per	letter)



Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					a	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]


→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

26

Vectors	where	exactly	one	dimension	is	1	and	all	others	are	0	are	called	one-hot	vectors


This	is	the	one-hot	representation	of	the	feature	“The	second	letter	of	the	name”

What	is	the	dimensionality	of	
these	feature	vectors?


26	(one	dimension	per	letter)



Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					o	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]

– Feature:	“The	length	of	the	first	name”


• Norman		 	6


• Karen							 	5

– “The	second	letter	of	the	name,	The	length	of	the	first	name,	The	length	of	the	last	name”


• Norman	Danner		 	[0		0		0		0	 	1	 	6	6]


• Karen		Collins							 	[1		0		0		0	 	0	 	5	7]

→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

→
→

→ … …
→ … …
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Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					o	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]

– Feature:	“The	length	of	the	first	name”


• Norman		 	6


• Karen							 	5

– “The	second	letter	of	the	name,	The	length	of	the	first	name,	The	length	of	the	last	name”


• Norman	Danner		 	[0		0		0		0	 	1	 	6	6]


• Karen		Collins							 	[1		0		0		0	 	0	 	5	7]

→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

→
→

→ … …
→ … …
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Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					o	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]

– Feature:	“The	length	of	the	first	name”


• Norman		 	6


• Karen							 	5

– “The	second	letter	of	the	name,	The	length	of	the	first	name,	The	length	of	the	last	name”


• Norman	Danner		 	[0		0		0		0	 	1	 	6	6]


• Karen		Collins							 	[1		0		0		0	 	0	 	5	7]

→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

→
→

→ … …
→ … …
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How	do	we	work	with	multiple	features?




Feature	functions	produce	feature	vectors
When	designing	feature	functions,	think	of	them	as	templates


– Feature:	“The	second	letter	of	the	name”

• Norman					o	 	[0		0		0		0	 	1	 	]


• Karen										a	 	[1		0		0		0	 	0	 ]


• Dan													a	 	[1		0		0		0	 	0	 ]


• Danny									a	 	[1		0		0		0	 	0	 ]


• Saray											a	 	[1		0		0		0	 	0	 ]


• Wai														a	 	[1		0		0		0	 	0	 ]

– Feature:	“The	length	of	the	first	name”


• Norman		 	6


• Karen							 	5

– “The	second	letter	of	the	name,	The	length	of	the	first	name,	The	length	of	the	last	name”


• Norman	Danner		 	[0		0		0		0	 	1	 	6	6]


• Karen		Collins							 	[1		0		0		0	 	0	 	5	7]

→ … …
→ … …
→ … …
→ … …
→ … …
→ … …

→
→

→ … …
→ … …
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How	do	we	work	with	multiple	features?

Features	can	be	accumulated	by	concatenating	the	vectors



Good	features	are	essential
Features	determine	how	well	a	task	can	be	learned


– E.g.,	a	bad	feature	for	our	game:	“Is	there	a	day	of	the	week	that	
begins	with	the	last	letter	of	the	first	name?


– Why	would	we	think	that	this	is	a	bad	feature?


Much	effort	goes	into	designing	(or	learning)	features


Will	touch	upon	general	principles	for	designing	good	features

– But	feature	definition	largely	domain	specific

– Comes	with	experience
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Using	supervised	learning

1. What	is	our	instance	space?

• What	are	the	inputs	to	the	problem?	What	are	the	features?


2. What	is	our	label	space?

• What	kind	of	learning	task	are	we	dealing	with?


3. What	is	our	hypothesis	space?

• What	functions	should	the	learning	algorithm	search	over?


4. What	is	our	learning	algorithm?

• How	do	we	learn	the	model	from	the	labeled	data?


5. What	is	our	loss	function	or	evaluation	metric?

• How	do	we	measure	success?	What	drives	learning?
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2.	The	label	space	Y

:	Instance	space


The	set	of	examples	
to	be	classified	

X

E.g.,	the	set	of	all	possible	
names,	documents,	sentences,	
images,	emails,	…	

The	goal	of	learning:	find	this	target	function

Target	function	

y = f (x)

E.g.,	{Spam,	Not-Spam},	{+,	-},	…

:	Label	space


The	set	of	all	
possible	labels

Y

Learning	is	search	over	functions



Label	space	depends	on	nature	of	the	problem
Classification:	the	outputs	are	categorical	


– Binary	classification:	two	possible	labels


– Multiclass	classification:	K	possible	labels


– Structured	classification:	e.g.,	graph	valued	outputs


		


34



Label	space	depends	on	nature	of	the	problem
Classification:	the	outputs	are	categorical	


– Binary	classification:	two	possible	labels


– Multiclass	classification:	K	possible	labels


– Structured	classification:	e.g.,	graph	valued	outputs
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Classification	is	the	primary	focus	of	this	class



Using	supervised	learning

1. What	is	our	instance	space?

• What	are	the	inputs	to	the	problem?	What	are	the	features?


2. What	is	our	label	space?

• What	kind	of	learning	task	are	we	dealing	with?


3. What	is	our	hypothesis	space?

• What	functions	should	the	learning	algorithm	search	over?


4. What	is	our	learning	algorithm?

• How	do	we	learn	the	model	from	the	labeled	data?


5. What	is	our	loss	function	or	evaluation	metric?

• How	do	we	measure	success?	What	drives	learning?
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Target	function

:	Instance	space


The	set	of	examples	
to	be	classified	

X

E.g.,	the	set	of	all	possible	
names,	documents,	sentences,	
images,	emails,	…	

The	goal	of	learning:	find	this	target	function

Target	function	

y = f (x)

E.g.,	{Spam,	Not-Spam},	{+,	-},	…

Learning	is	search	over	functions

:	Label	space


The	set	of	all	
possible	labels

Y
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Target	function

:	Instance	space


The	set	of	examples	
to	be	classified	

X

The	goal	of	learning:	find	this	target	function

Learning	is	search	over	functions

:	Label	space


The	set	of	all	
possible	labels

Y
Target	function	


y = f (x)

The	hypothesis	space	is	the	set	of	functions	we	consider	for	this	search	



0 0 0
0 1 0

1 0 0
1 1 1
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Example	of	search	over	functions






x1
x2

Unknown	
function	f

y = f(x1, x2)
		 				 							x1 x2 y

0=False,	1=True

Our	datasetFeatures
Label



0 0 0
0 1 0

1 0 0
1 1 1
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Example	of	search	over	functions






x1
x2

Unknown	
function	f

y = f(x1, x2)
		 				 							x1 x2 y

0=False,	1=True

Can	you	learn	this	function?	What	is	it?



0 0 0
0 1 0

1 0 0
1 1 1
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Example	of	search	over	functions






x1
x2

Unknown	
function	f

y = f(x1, x2)
		 				 							x1 x2 y

0=False,	1=True

Can	you	learn	this	function?	What	is	it?


(x1	AND	x2)
(x1 ∧ x2)



0 0 0
0 1 0

1 0 0
1 1 1

vumanfredi@wesleyan.edu

Example	of	search	over	functions






x1
x2

Unknown	
function	f

y = f(x1, x2)
		 				 							x1 x2 y

0=False,	1=True

Can	you	learn	this	function?	What	is	it?


(x1	AND	x2)
(x1 ∧ x2)

Are	we	sure	this	function	is	correct?	Why?



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0
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Example	of	search	over	functions








x1
x2
x3
x4

Unknown	
function	 
f

y = f(x1, x2, x3, x4)

		 				 				 				 							x1 x2 x3 x4 y

0=False,	1=True

Our	dataset

Features

Label



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

vumanfredi@wesleyan.edu

Example	of	search	over	functions

Can	you	learn	this	function?	What	is	it?


3	min:	Talk	with	your	neighbors









x1
x2
x3
x4

Unknown	
function	 
f

y = f(x1, x2, x3, x4)

		 				 				 				 							x1 x2 x3 x4 y

0=False,	1=True



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0
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Example	of	search	over	functions

Can	you	learn	this	function?	What	is	it?








x1
x2
x3
x4

Unknown	
function	 
f

y = f(x1, x2, x3, x4)

		 				 				 				 							x1 x2 x3 x4 y

0=False,	1=True









(x3	AND	x4)	OR	(x2	AND	x4)
(x3 ∧ x4) ∨ (x1 ∧ x4)

x4	AND(	NOT	x2)
x4 ∧ ¬x2



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

vumanfredi@wesleyan.edu

Example	of	search	over	functions

Can	you	learn	this	function?	What	is	it?








x1
x2
x3
x4

Unknown	
function	 
f

y = f(x1, x2, x3, x4)

		 				 				 				 							x1 x2 x3 x4 y

0=False,	1=True

How	do	you	know	function	is	correct?	We	
have	only	seen	7	outputs	after	all	…



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

vumanfredi@wesleyan.edu

Example	of	search	over	functions

Can	you	learn	this	function?	What	is	it?








x1
x2
x3
x4

Unknown	
function	 
f

y = f(x1, x2, x3, x4)

		 				 				 				 							x1 x2 x3 x4 y

0=False,	1=True

The	fundamental	problem:	machine	learning	is	ill-posed

How	do	you	know	function	is	correct?	We	
have	only	seen	7	outputs	after	all	…



0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?

vumanfredi@wesleyan.edu

Is	learning	possible	at	all? 		 				 				 				 							x1 x2 x3 x4 y

Complete	ignorance:	How	many	possible	Boolean	
functions	over	4	input	features?		


4	Boolean	input	features	 	
permutations	of	values,	i.e.,	4	rows	in	table


16	rows	means	 	different	ways	target	
outputs	can	be	set

→ 24 = 16

216 = 65536



0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?
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Complete	ignorance:	How	many	possible	Boolean	
functions	over	4	input	features?		


4	Boolean	input	features	 	
permutations	of	values,	i.e.,	4	rows	in	table


16	rows	 	each	way	to	fill	outputs	gives	a	different	
function.		 	different	ways	target	
outputs	can	be	set,	so	 	functions	in	all

→ 24 = 16

→
216 = 65536

216
For	these	rows,	how	many	
different	ways	to	set	labels?



0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
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1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?
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Complete	ignorance:	How	many	possible	Boolean	
functions	over	4	input	features?		


4	Boolean	input	features	 	
permutations	of	values,	i.e.,	4	rows	in	table


16	rows	 	each	way	to	fill	outputs	gives	a	different	
function.		 	different	ways	target	
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Complete	ignorance:	How	many	possible	Boolean	
functions	over	4	input	features?		


4	Boolean	input	features	 	
permutations	of	values,	i.e.,	4	rows	in	table


16	rows	 	each	way	to	fill	outputs	gives	a	different	
function.		 	different	ways	target	
outputs	can	be	set,	so	 	functions	in	all
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→
216 = 65536
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0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
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0 1 1 0 0
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1 0 0 0 ?
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1 0 1 0 ?
1 0 1 1 ?
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1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?
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Is	learning	possible	at	all? 		 				 				 				 							x1 x2 x3 x4 y

Complete	ignorance:	There	are	 	
possible	Boolean	functions	over	 	input	features


• Why?	There	are	 	possible	outputs.	Each	way	to	fill	
these	 	slots	is	a	different	function,	giving	 	
functions.


Problem:	We	have	seen	only	 	outputs,	leaving	
	possibilities	for	 


How	could	we	possibly	know	the	rest	without	
seeing	every	label?


• Think	of	an	adversary	filling	in	the	labels	every	time	
you	make	a	guess	at	the	function


216 = 65536
4

16
16 216

7
29 f



0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?

vumanfredi@wesleyan.edu

Is	learning	possible	at	all? 		 				 				 				 							x1 x2 x3 x4 y

Complete	ignorance:	There	are	 	
possible	Boolean	functions	over	 	input	features
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functions.


Problem:	We	have	seen	only	 	outputs,	leaving	
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Is	learning	possible	at	all? 		 				 				 				 							x1 x2 x3 x4 y

Complete	ignorance:	There	are	 	
possible	Boolean	functions	over	 	input	features


• Why?	There	are	 	possible	outputs.	Each	way	to	fill	
these	 	slots	is	a	different	function,	giving	 	
functions.


Problem:	We	have	seen	only	 	outputs,	leaving	
	possibilities	for	 


How	could	we	possibly	know	the	rest	without	
seeing	every	label?


• Think	of	an	adversary	filling	in	the	labels	every	time	
you	make	a	guess	at	the	function


216 = 65536
4

16
16 216

7
29 f

Is	learning	possible?	What	do	you	think?



Solution:	restrict	the	search	space

Hypothesis	space

– set	of	possible	functions	we	consider


We	were	looking	at	the	space	of	all	Boolean	functions	 


Instead,	choose	a	hypotheses	space	that	is	not	all	possible	functions

– Only	simple	conjunctions:	with	4	variables,	there	are	only	16	
conjunctions	without	negations


– m-of-n	rules:	pick	a	set	of	n	variables.	At	least	m	of	them	must	be	true

– Linear	functions

– Deep	neural	networks

–

…

…

56

The	“When	in	doubt,	make	an	assumption”	school	of	thought!



Solution:	restrict	the	search	space

Hypothesis	space

– set	of	possible	functions	we	consider


We	were	looking	at	the	space	of	all	Boolean	functions	 


Instead,	choose	a	hypotheses	space	that	is	not	all	possible	functions

– Only	simple	conjunctions:	with	4	variables,	there	are	only	16	
conjunctions	without	negations


– m-of-n	rules:	pick	a	set	of	n	variables.	At	least	m	of	them	must	be	true

– Linear	functions

– Deep	neural	networks

–

…

…
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The	“When	in	doubt,	make	an	assumption”	school	of	thought!



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Simple	conjunctions:	how	many	simple	
conjunctive	rules	of	the	form	

	?g(x) = xi ∧ xj ∧ xk⋯



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Simple	conjunctions:	how	many	simple	
conjunctive	rules	of	the	form	

	?g(x) = xi ∧ xj ∧ xk⋯

16	functions:	 ,	everything	else	0,	and	so	onx1 = 1



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯

What	are	some	of	these	rules?



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

Rule



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

Rule



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

Rule



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

Rule

Does	one	of	these	rules	explain	everything?	What	do	you	think?



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

RuleCounter-example Counter-example
















1001
1100
0100
0110
0101
1100
0011
0011
















0011
0011
1001
0011
0011
0011
0011
0011



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1

Is	there	a	consistent	hypothesis	in	this	space?

		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

RuleCounter-example Counter-example
















1001
1100
0100
0110
0101
1100
0011
0011
















0011
0011
1001
0011
0011
0011
0011
0011



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#1 		 				 				 				 							x1 x2 x3 x4 y

Rule

Always	False















x1
x2
x3
x4

x1 ∧ x2
x1 ∧ x3
x1 ∧ x4

Simple	conjunctions:	there	are	only	16	
simple	conjunctive	rules	of	the	form	

g(x) = xi ∧ xj ∧ xk⋯




















x2 ∧ x3
x2 ∧ x4
x3 ∧ x4

x1 ∧ x2 ∧ x3
x1 ∧ x2 ∧ x4
x1 ∧ x3 ∧ x4
x2 ∧ x3 ∧ x4

x1 ∧ x2 ∧ x3 ∧ x4

RuleCounter-example Counter-example
















1001
1100
0100
0110
0101
1100
0011
0011
















0011
0011
1001
0011
0011
0011
0011
0011

Is	there	a	consistent	hypothesis	in	this	space?

No	simple	conjunction	explains	the	data!


(Confirm	each	counterexample	by	going	through	the	list)


Our	hypothesis	space	is	too	small	and	the	true	function	we	
are	looking	or	is	not	in	it!




Solution:	restrict	the	search	space

Hypothesis	space

– set	of	possible	functions	we	consider


We	were	looking	at	the	space	of	all	Boolean	functions.	Instead,	choose	
a	hypotheses	space	that	is	not	all	possible	functions


How	do	we	pick	hypothesis	space?	Use	some	prior	knowledge	or	guess


What	if	the	hypothesis	space	is	so	small	that	nothing	in	it	agrees	with	
the	data?	Need	a	hypothesis	space	that	is	flexible	enough


68

The	“When	in	doubt,	make	an	assumption”	school	of	thought!



Solution:	restrict	the	search	space

Hypothesis	space

– set	of	possible	functions	we	consider


We	were	looking	at	the	space	of	all	Boolean	functions.	Instead,	choose	
a	hypotheses	space	that	is	not	all	possible	functions


How	do	we	pick	hypothesis	space?	Use	some	prior	knowledge	or	guess


What	if	the	hypothesis	space	is	so	small	that	nothing	in	it	agrees	with	
the	data?	Need	a	hypothesis	space	that	is	flexible	enough
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Solution:	restrict	the	search	space

Hypothesis	space

– set	of	possible	functions	we	consider


We	were	looking	at	the	space	of	all	Boolean	functions.	Instead,	choose	
a	hypotheses	space	that	is	not	all	possible	functions


How	do	we	pick	hypothesis	space?	Use	some	prior	knowledge	or	guess


What	if	the	hypothesis	space	is	so	small	that	nothing	in	it	agrees	with	
the	data?	Need	a	hypothesis	space	that	is	flexible	enough
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0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#2 		 				 				 				 							x1 x2 x3 x4 y

m-of-n	rules:	pick	a	subset	with	 	variables.	The	
label	 	is	1	if	at	least	 	of	the	variables	are	1

n
y m

Is	there	a	consistent	hypothesis	in	this	space?

Exercise:	How	many	m-of-n	rules	are	
there	for	4	variables?



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#2 		 				 				 				 							x1 x2 x3 x4 y

m-of-n	rules:	pick	a	subset	with	 	variables.	The	
label	 	is	1	if	at	least	 	of	the	variables	are	1

n
y m

Is	there	a	consistent	hypothesis	in	this	space?

Example:	if	at	least	2	of	 are	1,	
then	the	output	is	1.	Otherwise	the	output	is	0

{x1, x2, x3, x4}

Exercise:	How	many	m-of-n	rules	are	
there	for	4	variables?



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

Example	hypothesis	space	#2 		 				 				 				 							x1 x2 x3 x4 y

m-of-n	rules:	pick	a	subset	with	 	variables.	The	
label	 	is	1	if	at	least	 	of	the	variables	are	1

n
y m

Is	there	a	consistent	hypothesis	in	this	space?

Example:	if	at	least	2	of	 are	1,	
then	the	output	is	1.	Otherwise	the	output	is	0

{x1, x2, x3, x4}



0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

m-of-n	rules	for	4	variables 		 				 				 				 							x1 x2 x3 x4 y

m-of-n	rules:	There	are	32	possible	rules	

of	the	form	“ 	if	and	only	if	at	least	 	


of	the	following	 	variables	are	1”
y = 1 m

n

Index
1 0 0 1 0 0
2 0 1 0 0 0

3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

Variables














{x1}
{x2}
{x3}
{x4}

{x1, x2}
{x1, x3}
{x1, x4}


















{x2, x4}
{x2, x4}
{x3, x4}

{x1, x2, x3}
{x1, x2, x4}
{x1, x3, x4}
{x2, x3, x4}

{x1, x2, x3, x4}

1-of		2-of		3-of		4-of
















3 − − −
2 − − −
1 − − −
7 − − −
2 3 − −
1 3 − −
6 3 − −
















2 3 − −
2 3 − −
4 4 − −
1 3 3 −
2 3 3 −
1 * 3 −
1 5 3 −
1 5 3 3

Variables 1-of		2-of		3-of		4-of

		 				 				 				 							x1 x2 x3 x4 y

Notation:	1	variable	from	the	set	on	the	left	is	1
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Notation:	2	variables	from	the	set	on	the	left	are	1
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Notation:	2	variables	from	the	set	on	the	left	are	1

If	set	has	k	variables,	than	
can	choose	at	most	k
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1 0 0 1 1
0 1 1 0 0
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0 1 0 1 0
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m-of-n	rules:	There	are	32	possible	rules	

of	the	form	“ 	if	and	only	if	at	least	 	


of	the	following	 	variables	are	1”
y = 1 m
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Index
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3 − − −
2 − − −
1 − − −
7 − − −
2 3 − −
1 3 − −
6 3 − −
















2 3 − −
2 3 − −
4 4 − −
1 3 3 −
2 3 3 −
1 * 3 −
1 5 3 −
1 5 3 3

Variables 1-of		2-of		3-of		4-of

		 				 				 				 							x1 x2 x3 x4 y

Value:	index	of	the	counterexample



m-of-n	rules	for	4	variables

m-of-n	rules:	There	are	32	possible	rules	

of	the	form	“ 	if	and	only	if	at	least	 	


of	the	following	 	variables	are	1”
y = 1 m

n

Variables
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3 − − −
2 − − −
1 − − −
7 − − −
2 3 − −
1 3 − −
6 3 − −
















2 3 − −
2 3 − −
4 4 − −
1 3 3 −
2 3 3 −
1 * 3 −
1 5 3 −
1 5 3 3

Variables 1-of		2-of		3-of		4-of

Are	there	any	consistent	hypotheses?

(I.e.,	does	any	hypothesis	satisfy	all	of	the	data?

0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

		 				 				 				 							x1 x2 x3 x4 yIndex
1 0 0 1 0 0
2 0 1 0 0 0

3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

		 				 				 				 							x1 x2 x3 x4 y



m-of-n	rules	for	4	variables

m-of-n	rules:	There	are	32	possible	rules	

of	the	form	“ 	if	and	only	if	at	least	 	


of	the	following	 	variables	are	1”
y = 1 m

n

Variables
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{x3}
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{x1, x2}
{x1, x3}
{x1, x4}
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{x1, x3, x4}
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1-of		2-of		3-of		4-of
















3 − − −
2 − − −
1 − − −
7 − − −
2 3 − −
1 3 − −
6 3 − −
















2 3 − −
2 3 − −
4 4 − −
1 3 3 −
2 3 3 −
1 * 3 −
1 5 3 −
1 5 3 3

Variables 1-of		2-of		3-of		4-of

Found	a	consistent	hypothesis!

(In	practice	find,	e.g.,	with	neural	net)

0 0 1 0 0
0 1 0 0 0

0 0 1 1 1
1 0 0 1 1
0 1 1 0 0
1 1 0 0 0
0 1 0 1 0

		 				 				 				 							x1 x2 x3 x4 yIndex
1 0 0 1 0 0
2 0 1 0 0 0

3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

		 				 				 				 							x1 x2 x3 x4 y



General	strategies	for	Machine	Learning

Pick	expressive	hypothesis	spaces

– Decision	trees,	neural	networks,	m-of-n	functions,	
linear	functions,	 


Develop	algorithms	for	finding	a	hypothesis	in	our	
hypothesis	space,	that	fits	the	data	well	(or	well	enough)


Hope	that	the	hypothesis	generalizes

…



Perspectives	on	learning

Learning	is	the	removal	of	our	remaining	uncertainty	over	a	
hypothesis	space


– If	we	knew	that	the	unknown	function	is	a	simple	
conjunction,	then	we	could	use	the	training	data	to	infer	
which	one	it	is.


Learning	requires	guessing	a	good,	small	hypothesis	class

– We	can	start	with	a	very	small	class	and	enlarge	it	until	it	
contains	an	hypothesis	that	fits	the	data.


– And	we	could	be	wrong.	We	could	find	a	consistent	
hypothesis	and	still	be	incorrect	when	given	a	new	example!
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contains	an	hypothesis	that	fits	the	data.


– And	we	could	be	wrong.	We	could	find	a	consistent	
hypothesis	and	still	be	incorrect	when	given	a	new	example!
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Using	supervised	learning

1. What	is	our	instance	space?

• What	are	the	inputs	to	the	problem?	What	are	the	features?


2. What	is	our	label	space?

• What	kind	of	learning	task	are	we	dealing	with?


3. What	is	our	hypothesis	space?

• What	functions	should	the	learning	algorithm	search	over?


4. What	is	our	learning	algorithm?

• How	do	we	learn	the	model	from	the	labeled	data?


5. What	is	our	loss	function	or	evaluation	metric?

• How	do	we	measure	success?	What	drives	learning?

Much	of	the	rest	
of	the	semester	


