Lecture 22: Tensorflow Introduction COMP 343, Spring 2022

Victoria Manfredi

Outline

Homework 7 and Project proposal

Due today!

Homework 5 and 6

about 10 homeworks still to grade for each ...

Tensorflow

- Installation
- Simple neural network
- Re-implement Titanic neural network
- Other things to explore

What is Tensorflow (and Keras)?

 A machine learning library primarily for (deep) neural networks

 Makes constructing and training neural networks very easy. Can easily vary architectures and methods for training

 Neural networks implemented can be anything simple to complex state-of-the art models

Tensorflow installation

- You can install tensorflow locally
 pip install tensor flow
 or
 pip3 install tensorflow
- Or you can use Google colab which is already installed and you just need to import tensor flow

https://colab.research.google.com/

For details see https://www.tensorflow.org/install

Simple neural network

Read through and set up neural network here
https://www.tensorflow.org/tutorials/quickstart/beginner

Epoch

One complete pass through all examples

Batch

- Examples divided into batches, weights updated after processing each batch
- Batch size is typically less than number of examples

Iteration

- Number of iterations that an epoch runs
- Given n examples and batch size of b then number of iterations is n / b

Tensorflow good-to-know

- A neural network is built using a sequential list
 - Each layer of the network is represented by a Dense(x,a) layer where x is the number of nodes and a is the activation function.
- The model.compile() step is necessary to set what metrics/loss functions are used.
 - It generalizes to both classification and regression problems, you just need to pick different metrics and loss functions depending on the problem.
- A classification problem has x output nodes for x categories unless it is a binary classification, in which case just 1 output node and use the Binary_Crossentropy() loss function.
- A regression problem like the ones we have seen also only has one output node. Multioutput regression, however, is also possible
- You can try to prevent overfitting with a combination of L2 regularization and dropout.
 Dropout "zeroes out" a certain percentage of random output features during training and at test time the output features are scaled down by this percentage to prevent overfitting.

Titanic predictions again

- Will need to change neural network settings
 - Loss is now binary cross entropy
 - Hidden layer activation: tanh
 - Output layer activation: sigmoid activation
- Try adding dropout rate of 0.2

Other things to explore

- Regression: https://www.tensorflow.org/tutorials/keras/regression
- Overfitting vs. underfitting: https://www.tensorflow.org/tutorials/
 keras/overfit and underfit

- What can you vary?
 - Regularization
 - Number of hidden nodes
 - Loss function
 - Activation function
 - Optimization algorithm
 - **>**