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Today’s	Topics

Homework	7	
‣ due	Wednesday,	April	20	

Recap	

Neural	networks	practical	concerns	
‣ General	tips	
‣ Problems	with	gradient	descent	
‣ Preventing	overfitting	
‣ Summary



Recap



Backpropagation	algorithm

The	same	algorithm	works	for	multiple	layers	and	more	
complicated	architectures	

Repeated	application	of	the	chain	rule	for	partial	derivatives	
‣ First	perform	forward	pass	from	inputs	to	the	output	
‣ Compute	loss	
‣ From	loss,	proceed	backwards	to	compute	partial	
derivatives	using	chain	rule	

‣ Cache	partial	derivatives	as	you	compute	them	to	use	
for	lower	layers
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Backpropagation	(of	errors)
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Important:	 	is	a	differentiable	function	
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Applying	the	chain	rule	to	compete	the	gradient	
(and	remembering	partial	computations	along	
the	way	to	speed	up	learning)
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Backpropagation:	output	layer
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Backpropagation:	output	layer
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Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

=
∂L
∂y

⋅
∂y

∂wh
2,2

	is	not	a	function	of	
	so	can	eliminate	

term	(like	a	constant)	

z1
wh

2,2

		=
∂L
∂y

⋅
∂

∂wh
2,2

(wo
0,1 + wo

1,1z1 + wo
2,1z2)

		=
∂L
∂y

⋅ (wo
1,1

∂
∂wh

2,2
z1 + wo

2,1
∂

∂wh
2,2

z2)

0

So	apply	chain	rule

Substitute	in	for	y

Derivative	of	sum	is	
sum	of	derivatives

	

	

	

y = σ(wo
0,1 + wo

1,1z1 + wo
2,1z2)

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

Review



10

Backpropagation:	hidden	layer
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Backpropagation:	hidden	layer
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Review

Importantly:	we	have	already	computed	many	of	these	partial	derivatives	
because	we	are	proceeding	from	top	to	bottom	(i.e.,	backwards).	And	

calculations	can	be	vectorized	for	efficient	computation	on	GPUs



Stochastic	gradient	descent
Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	using			
					backpropagation	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w
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min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

The	objective	is	not	convex	
Initialization	can	be	important

Review



OTHER	LOSS	FUNCTIONS	(AND	
ACTIVATIONS)

Neural	Networks



Regression	vs.	classification
3	min:	What	should	we	change	with	neural	network?	

Regression	
▪ Output	activation:		Linear,	Rectified	Linear	(ReLU),	…	
▪ Squared	loss	

Classification	
▪ Output	activation:	sigmoid,	…			
▪ What	loss	function	to	use?	One	option	is	Log	loss	

Important:	changing	loss	function	or	activations	will	change	
gradient	computations.
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Log	loss
Sigmoid	activation	on	output	(i.e.,	 )	makes	log	loss	easy	to	
compute	as	output	can	be	interpreted	as	probability	of	label.			

▪ :	probability	 	belongs	to	positive	class	
▪ :	probability	 	belongs	to	negative	(or	other)	class	

Thus	log	loss	for	binary	classification	with	sigmoid	activation	is	

	

In	homework	7	you	will	compute	log	loss	averaged	over	all	examples	(this	
in	preparation	for	implementing	Backpropagation	on	homework	8)	

ypred = σ(z(x))

σ(z(x)) x
1 − σ(z(x)) x

Log	loss = − (ytrue
i log(ypred

i ) + (1 − ytrue
i )log(1 − ypred

i ))

Log	loss = −
1
N

N

∑
i=1

(ytrue
i log(ypred

i ) + (1 − ytrue
i )log(1 − ypred

i ))
15true	probability	of	label predicted	probability	of	label



GENERAL	TIPS
Neural	Networks



How	to	initialize	weights?
Initialize	weights	randomly,	but	close	to	zero	

Give	random	number	generator	same	random	seed	during	
debugging,	to	ensure	you	get	the	same	output	

Once	debugging	done:	set	random	seed	randomly,	such	as	a		
function	of	current	time	

Question:	why	is	randomness	particularly	important	now?	
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How	to	normalize	data?
Noise	in	large-valued	features	can	be	more	than	size	of	small-valued	
features!	So	want	at	a	minimum	all	features	to	have	values	within	
same	range	

Normalization	
‣ Typically	normalize	between	-1	and	1	or	0	and	1	
‣ May	just	normalize	features	by	max-min	
‣ Or	may	normalize	based	on	distribution	of	features	
‣ e.g.,	many	features	in	one	range	of	values	but	few	in	
another	range

18
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Input-Output	Coding

▪ Appropriate	coding	of	inputs	and	outputs	can	make	
learning	problem	easier	and	improve	generalization	

▪ Encode	each	binary	feature	as	a	separate	input	unit	

▪ For	multi-valued	features	include	one	binary	unit	per	
value	rather	than	trying	to	encode	input	information	in	
fewer	units	



PROBLEMS	WITH	GRADIENT	
DESCENT

Neural	Networks
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How	to	handle	lack	of	convergence?
No	guarantee	of	convergence;	may	oscillate	or	reach	a	local	minima.	

In	practice,	many	large	networks	are	trained	on	large	amounts	of	data	for	
realistic	problems.	

Many	epochs	(tens	of	thousands)	may	be	needed	for	adequate	training.	
Large	data	sets	may	require	many	hours/days/weeks	of	CPU	or	GPU	time,	
sometimes	specialized	hardware	even	

Termination	criteria:	Number	of	epochs;		threshold	on	training	set	error;	no	
decrease	in	error;	increased	error	on	a	validation	set.	

To	avoid	local	minima:	several	trials	with	different	random	initial	weights	
with	majority	or	voting	techniques



22

Minibatches
Stochastic	gradient	descent	

‣ Take	a	random	example	at	each	step	
‣ Write	down	the	loss	function	with	that	example	
‣ Compute	gradient	of	this	loss	and	take	a	step	

Stochastic	gradient	descent	with	minibatches	
‣ Collect	a	small	number	of	random	examples	(the	minibatch)	at	each	step	
‣ Write	down	the	loss	function	with	that	example	
‣ Compute	gradient	of	this	loss	and	take	a	step	

New	hyperparameter:	size	of	the	mini	batch	
‣ Often	governs	how	fast	learning	converges	
‣ Hardware	considerations	around	memory	can	dictate	size	of	minibatch

Why	should	we	take	only	one	random	example	at	each	step?
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Gradient	tricks
Simple	gradient	descent	updates	the	parameters	using	the	gradient	of	one	
example	(or	a	mini	batch	of	them),	denoted	by	 	gi

parameters ← parameters−ηgi

Gradients	could	change	much	faster	in	one	direction	than	another	
When	gradients	change	very	fast,	this	can	make	learning	slow,	or	worse,	unstable.	
Quality	of	model	can	change	drastically	based	on	how	many	epoch	you	run	

Each	pink	link	line	is	gradient	



Gradient	tricks:	momentum
Averaging	together	successive	gradients	seem	to	yield	a	much	better	
direction	

Intuition:	if	successive	gradients	steps	point	in	different	directions	we	
should	cancel	off	the	directions	that	disagree	

If	successive	gradient	steps	point	in	similar	directions,	we	should	go	faster	
in	that	direction		

24vumanfredi@wesleyan.edu
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Gradient	tricks:	momentum
Momentum	smooths	out	updates	by	using	a	weighted	average	of	all	
previous	gradients	at	each	step	

Instead	of	updating	with	the	gradient	( ),	use	a	moving	average	of	gradients	
( )	to	update	the	model	parameters.	In	the	inner	loop:	

															 	
	

The	hyperparameter	 	controls	how	much	of	the	previous	update	should	be	
retained.	Typical	value	 	

gi
vt

vt ← μvt−1 + (1 − μ)ηtgi

parameters ← parameters−vt

μ
μ = 0.9

Update	is	average	of	
previous	update	and	

gradient
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Gradient	tricks

▪ While	direction	of	gradient	is	useful,	magnitude	may	be	
very	variable	from	one	update	to	the	next.	

▪ So	normalizing	by	a	running	average	of	gradients	seen	
so	far	can	be	useful,	so	that	every	update	is	
approximately	the	same	size,	rather	than	sometimes	
big	updates	and	small	updates	

▪ AdaGrad,	RMSProp,	Adam	are	versions	of	gradient	
descent	that	incorporate	these	ideas
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Gradient	tricks:	AdaGrad
AdaGrad.	Estimate	per-dimension	cumulative	magnitude,	then	divide	each	
dimension	by	its	magnitude.	Each	parameter	(weight)	has	its	own	learning	
rate	

RMSProp.	Estimate	per-dimension	magnitude	(running	average),	then	divide	
each	dimension	by	its	magnitude.	Similar	to	AdaGrad	but	more	recent	
gradients	are	weighted	more	in	the	denominator	

Adam.	A	combination	of	many	ideas:		
‣ Momentum	to	smooth	gradients	
‣ RMSProp	like	approach	for	adaptively	choosing	learning	rate	with	more	
recent	gradients	being	weighted	higher	
‣ Additional	terms	to	avoid	bias	introduced	during	early	gradient	
estimates	
‣ Currently	the	most	commonly	used	variant	of	gradient	based	learning



Vanishing/exploding	gradients	

Vanishing	gradients	are	quite	
prevalent	and	a	serious	issue		

A	real	example		
‣ Training	a	feed-forward	network		
‣ y-axis:	sum	of	the	gradient	norms	
‣ Earlier	layers	have	exponentially	

smaller	sum	of	gradient	norms	
‣ This	will	make	training	earlier	

layers	much	slower	

28

Gradient	can	become	very	small	or	very	large	quickly,	and	the	locality	
assumption	of	gradient	descent	breaks	down	(Vanishing	gradient)	

[Bengio	et	al	1994]

Try	changing	activation	functions,	architectures,	learning	
weights,	weight	initialization	…



PREVENTING	OVERFITTING
Neural	Networks
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Preventing	overfitting:	why?

As	you	make	neural	networks	deeper	(many	hidden	
layers),	adding	complexity	to	model.	Maybe	enough	
complexity	to	just	memorize	data.	

What	do	we	know	about	very	complex	models?	

Prone	to	overfitting!
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Preventing	overfitting:	how?

1.Cross-validation	

2.Changing	number	of	hidden	units	

3.Dropout	training
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Preventing	overfitting:	validation	set	
Running	too	many	epochs	may	over-train	the	network	and	result	in	over-
fitting	(improved	result	on	training,	decrease	in	performance	on	test	set)		

Keep	an	hold-out	validation	set	and	test	accuracy	after	every	epoch	

Maintain	weights	for	best	performing	network	on	the	validation	set	and	
return	it	when	performance	decreases	significantly	beyond	that.	

To	avoid	losing	training	data	to	validation:	
– Use	10-fold	cross-validation	to	determine	the	average	number	of	epochs	
that	optimizes	validation	performance	

– Train	on	full	data	set	using	this	many	epochs	to	produce	final	results
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Preventing	overfitting:	hidden	units	

Too	few	hidden	units	prevent	the	system	from	adequately	
fitting	the	data	and	learning	the	concept	

Using	too	many	hidden	units	leads	to	over-fitting	

Cross-validation	or	performance	on	a	held	out	set	can	be	
used	to	determine	an	appropriate	number	of	hidden	units	
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Preventing	overfitting:	dropout	training
Proposed by (Hinton et al, 2012)

During	training,	for	each	step,	decide	whether	to	delete	a	
hidden	unit	with	some	probability	 	

– That	is,	make	predictions	using	only	a	randomly	chosen	set	of	
neurons,	and	update	only	these	neurons	

Tends	to	avoid	overfitting	

Has	a	model	averaging	effect	
– Only	some	parameters	trained	at	any	step

p
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Preventing	overfitting:	dropout	training

Dropout	of	50%	of	the	hidden	units	and	20%	of	the	input	units	
(Hinton	et	al,	2012)



SUMMARY
Neural	Networks



Why	(deep)	neural	networks?

Universality		
▪ In	principle	can	approximate	an	arbitrary	function	

using	just	a	single	hidden	layer.		

Why	should	we	use	neural	networks	with	many	layers?	
▪ Well-adapted	to	learning	hierarchies	of	knowledge:	

pixel	 	shape	 	object	 	multiple	objects	 	scene	→ → → →
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What	we	saw

What	is	a	neural	network	
Multiple	layers:		

▪ inner	layers	learn	a	representation	of	the	data	
Highly	expressive	

▪ Neural	networks	can	learn	arbitrarily	complex	functions	
▪ Is	this	always	a	good	thing?	Overfitting?	
▪ Can	be	challenging	to	learn	the	parameters	as	multiple	

optima.	Many	tricks	to	make	gradient	descent	work	

Training	neural	networks	
▪ Backpropagation
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What	we	did	not	see
Vast	area,	fast	moving	

▪ Many	new	algorithms	and	tricks	for	learning	that	tweak	on	the	basic	
gradient	method	

Some	named	neural	networks	
▪ Restricted	Boltzmann	machines	and	auto	encoders:	learn	a	latent	

representation	of	the	data	
▪ Convolutional	neural	network:	modeled	after	the	mammalian	visual	

cortex,	currently	the	state	of	the	art	for	object	recognition	tasks	
▪ Recurrent	neural	networks	and	transformers:	encode	and	predict	

sequences	
▪ Attention:	use	a	neural	network	to	decide	what	parts	of	a	set	of	

features	are	relevant	and	create	an	aggregate	“attended”	
representation	

▪ …	and	many	more
39


