
Lecture 19: Neural Networks Backward 
Pass

COMP 343, Spring 2022

Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	content	from	the	
book	“Machine	Learning”	by	Tom	Mitchell	and	slides	created	by	Vivek	Srikumar	
(Utah)	and	Dan	Roth	(Penn)	and	Dan	Klein	and	Pieter	Abbeel	(UC	Berkeley)



vumanfredi@wesleyan.edu

Today’s	Topics

Homework	7	
‣ out	on	Wednesday	

Neural	networks	
‣ Prediction	using	a	neural	network	
‣ Training	neural	networks	
‣ Practical	concerns



HOW	DO	WE	COMPUTE	OUTPUT	OF	
NEURAL	NETWORK?

Neural	Networks



How	do	we	define	a	neural	network?

4

Called	the	architecture	
of	network.	Typically	
predefined,	part	of	the	
design	of	the	classifier.		

Specialized	architectures	
for	different	problems	
like	vision	or	text

Learned	from	data,	assuming	
structure	of	graph	is	fixed

Output

Hidden

Input

Activation

wh
ij

wo
ij

Linear	units

Sigmoid	units

ReLu	units

To	define	a	neural	network,	we	need	to	specify		
‣ The	structure	of	the	graph:	how	many	nodes	(what	
is	the	type	of	each	node)	and	how	are	they	
organized	(what	is	the	connectivity	among	nodes)	

‣ The	activation	function	on	each	node	
‣ The	edge	weights



vumanfredi@wesleyan.edu 5

Consider	an	example	network

													 													z0 z1 z2

output

													 													x0 x1 x2

							y

We	will	use	this	example	
network	to	introduce	the	
general	principle	of	how	to	
make	predictions	with	a	
neural	network

How	many	layers	does	this	
neural	network	have?

	2	layers



vumanfredi@wesleyan.edu 6

What	is	all	this	notation? Naming	conventions	
for	this	example	

• inputs:	 	

• hidden:	 	

• output:	 	

x
z
y

													 													z0 z1 z2

output

													 													x0 x1 x2

							y

What	are	some	examples	
of	x	and	y?

xs	are	features,	could	be	
any	features	we’ve	used	
on	homework	

ys	are	what	we	are	trying	
to	predict,	e.g.,	house	
price,	spam	or	not	spam,	
etc.



vumanfredi@wesleyan.edu 7

Bias	features	are	part	of	network Naming	conventions	
for	this	example	

• inputs:	 	

• hidden:	 	

• output:	 	

x
z
y

													 													z0 z1 z2

output

													 													x0 x1 x2

							y

Bias	feature	in	
both	hidden	
layers,	always	1



vumanfredi@wesleyan.edu 8

What	activation	functions	to	use? Naming	conventions	
for	this	example	

• inputs:	 	

• hidden:	 	

• output:	 	

x
z
y

													 													z0 z1 z2

output

													 													x0 x1 x2

							y

Bias	feature,	
always	1

Let’s	assume	sigmoid	
activations	for	these	

nodes,	
1

1 + e−z

Linear	activation,	so	
output	is	just	linear	
function	of	inputsNeed	to	also	

specify	activations	



vumanfredi@wesleyan.edu 9

Every	edge	has	a	weight Naming	conventions	
for	weights:	

	wtarget−layer
from,to

													 													1 z1 z2

output

													 													1 x1 x2

							yE.g.,	from	neuron	 	to	
neuron	 	in	output	layer

0
1

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

Need	to	specify	
weights	in	order	to	
make	predictions	

One	weight	for	every	
edge	in	graph



	z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

vumanfredi@wesleyan.edu 10

How	to	do	prediction?	

Forward	pass:	given	an	input	 ,	how	is	the	
output	predicted	using	a	neural	network?

x

													 													1 z1 z2

output

													 													1 x1 x2

							y

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

Predict	from	the	bottom	up	…

To	compute	output	need	to	know	
each	input	and	associated	weight

Question:	what	is	activation	at	
hidden	nodes,	 ?	Sigmoidz



vumanfredi@wesleyan.edu 11

The	forward	pass	for	prediction

Given	an	input	 ,	how	is	the	output	predicted?x

													 													1 z1 z2

output

													 													1 x1 x2

							y

			 					 						wout
0,1 wout

1,1 wout
2,1

			 			 						 					wh
0,1 wh

0,2 wh
1,2 wh

2,2

	

	

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



vumanfredi@wesleyan.edu 12

The	forward	pass	for	prediction

Given	an	input	 ,	how	is	the	output	predicted?x

													 													1 z1 z2

output

													 													1 x1 x2

							y

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

In	general,	to	predict	output,	just	
compute	value.	But	before	
visiting	(i.e.,	computing)	the	
value	of	a	node,	need	to	visit	all	
nodes	that	serve	as	inputs	to	it



HOW	DO	WE	TRAIN	NEURAL	
NETWORKS?

Neural	Networks



Training	a	neural	network

Given	
A	network	architecture		
‣ layout	of	neurons,	neuron	connectivity,	and	neuron	activations	

A	dataset	of	labeled	examples	

‣ 	

Goal	
‣ Learn	the	weights	of	the	neural	network	

Remember	
‣ For	a	fixed	architecture,	a	neural	network	is	a	function	
parameterized	by	its	weights	

‣ Prediction:	 	
‣

S = {(xi, yi)}

y = NN(x, w)
14vumanfredi@wesleyan.edu



Recall:	Learning	as	loss	minimization

We	have	a	classifier	 	that	is	completely	defined	by	its	
weights.	Learn	the	weights	by	minimizing	a	loss	 	

	

How	do	we	solve	the	optimization	problem?

NN
L

min
w ∑

i

L(NN(xi, w), yi)

15

Saw	strategy	that	worked	for	perceptron	and	LMS	
regression:	each	minimizes	a	different	loss	function	using	
(stochastic)	gradient	descent	algorithm.	

Same	idea	for	non-linear	models	too!

perhaps	with	a	regularizer	



16

Back	to	our	running	example
Given	an	input	 ,	how	is	the	output	predicted?x

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

Suppose	we	have	set	of	weights	and	the	true	
label	for	example	is	real	number	 .		yi

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

Question:	What	kind	of	learning	problem	do	
we	have	and	what	is	reasonable	loss	function?
Regression	problem,	and	square	loss	is	
reasonable	loss	function	to	use.	We	can	write	
square	loss	for	example	as:	

	L =
1
2

(ypred − yi)2

Error	is	a	function	of	all	weights!



17

A	notational	convenience
Commonly	nodes	in	the	network	represent	not	only	single	numbers	(e.g.,	features,	
outputs)	but	also	vectors	(an	array	of	numbers),	matrices	(a	2d	array	of	numbers)	
or	tensors	(an	n-dimensional	array	of	numbers)

													 													z0 z1 z2

output

													 													x0 x1 x2

							y

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

						x Represents	 				[x0, x1, x2]

						z

Wh = [
wh

0,1 wh
1,1 wh

2,1

wh
0,2 wh

1,2 wh
2,2]

z = σ(Whx)

							y y = woz

Wo = [wo
0,1 wo

1,1 wo
2,1]

No	activation	because	the	
output	is	defined	to	be	linear

z	here	doesn’t	
include	bias	z_0



Recall:	Learning	as	loss	minimization

We	have	a	classifier	 	that	is	completely	defined	by	its	
weights.	Learn	the	weights	by	minimizing	a	loss	 	

	

How	do	we	solve	the	optimization	problem?

NN
L

min
w ∑

i

L(NN(xi, w), yi)

18

(Stochastic)	gradient	descent	



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

19

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu

Parameters	 	are	the	only	unknownw

Return	final	weights	once	converged



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

20

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

21

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu

Recall	shuffling	with	perceptron	
(which	uses	stochastic	gradient	
descent	though	we	didn’t	call	it	that)



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

22

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu



Stochastic	gradient	descent

Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

23

min
w ∑

i

L(NN(xi, w), yi)

The	objective	is	not	convex	
(unlike	with	linear	classifiers/
regressors).	Initialization	is	
now	extremely	important!

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu

Have	we	solved	everything?	



The	derivative	of	the	loss	function?

If	the	neural	network	is	a	differentiable	function,	we	can	find	the	gradient	
‣ Or	maybe	its	sub-gradient	(to	minimize	non-differentiable	function)	
‣ This	is	decided	by	the	activation	functions	and	the	loss	function	

Easy	if	one	layer.	But	how	to	find	sub-gradient	of	more	complex	function?	
‣ E.g.,	150	layer	neural	network	for	image	classification!	

Even	worse,	every	time	we	change	neural	network	graph,	we	have	a	
different	gradient	to	compute,	since	graph	represents	function	

24

We	need	an	efficient	algorithm	
Backpropagation:	computes	gradients	of	functions	

∇L(NN(xi, w), yi)



Checkpoint

If	we	have	neural	network	(structure,	activations,	and	
weights),	we	can	make	a	prediction	for	an	input	

If	we	had	the	true	label	of	the	input,	then	we	can	define	
the	loss	for	that	example	

If	we	can	take	the	derivative	of	the	loss	with	respect	to	
each	of	the	weights,	we	can	take	a	gradient	step	in	SGD	

So	how	do	we	compute	the	derivative?	

25vumanfredi@wesleyan.edu



Some	simple	expressions
	

	

f (x, y) = x + y

f (x, y) = xy

f (x, y) = max(x, y)

26

	

	

	

	

,	if	 ,	 	otherwise	

,	if	 ,	 	otherwise	

∂f
∂x

= 1

∂f
∂y

= 1

∂f
∂x

= y

∂f
∂x

= x

∂f
∂x

= 1 x ≥ y 0

∂f
∂y

= 1 y ≥ x 0



Some	simple	expressions
	

	

f (x, y) = x + y

f (x, y) = xy

f (x, y) = max(x, y)

27

	

	

	

	

,	if	 ,	 	otherwise	

,	if	 ,	 	otherwise	

∂f
∂x

= 1

∂f
∂y

= 1

∂f
∂x

= y

∂f
∂x

= x

∂f
∂x

= 1 x ≥ y 0

∂f
∂y

= 1 y ≥ x 0



Some	simple	expressions
	

	

f (x, y) = x + y

f (x, y) = xy

f (x, y) = max(x, y)

28

	

	

	

	

,	if	 ,	 	otherwise	

,	if	 ,	 	otherwise	

∂f
∂x

= 1

∂f
∂y

= 1

∂f
∂x

= y

∂f
∂x

= x

∂f
∂x

= 1 x ≥ y 0

∂f
∂y

= 1 y ≥ x 0

Useful	to	keep	in	mind	what	these	derivatives	
represent	in	these	(and	all	other)	cases:	

	

Represents	the	rate	of	change	of	the	function	 	
with	respect	to	a	small	change	in	

∂f
∂x

f
x



More	complicated	cases?
	

This	is	still	simple	enough	to	manually	take	derivatives,	but	let	us	work	
through	this	in	a	slightly	different	way	

Break	down	the	function	in	terms	of	simple	forms	
																	 	
																	 	

Each	of	these	is	a	simple	form.	We	know	how	to	compute		 	

Key	idea:	build	up	derivatives	of	compound	expressions	by	breaking	it	
down	into	simpler	pieces,	and	applying	the	chain	rule	

																																								

f(x, y, z) = x(y2 + z)

g = y2 + z
f = xg

∂g
∂y

,
∂g
∂z

,
∂f
∂x

,
∂f
∂g

∂f
∂y

=
∂f
∂g

⋅
∂g
∂y

= x ⋅ 2y = 2xy
29



30

Reminder:	chain	rule	of	derivatives
If	 	is	a	function	of	 	and	 	is	a	function	of	 	then	 	is	a	function	of	 	as	well	y z z x y x

						x

						z
	by	chain	rule	(or	 	)

∂y
∂x

=
∂y
∂z

⋅
∂z
∂x

∂y
∂x

= f′ (g(x))g′ (x)

							y

vumanfredi@wesleyan.edu

then	 	is	a	function	of	 	as	well,	 	y x y = f(g(x))

and	 	is	a	function	of	 ,	z x z = g(x)

If	 	is	a	function	of	 ,	y z y = f(z)

How	to	find	gradient	of	 	with	respect	to	 ,	 ?y x
∂y
∂x



31

Reminder:	chain	rule	of	derivatives
If	 	is	a	function	of	 	+	a	function	of	 ,	and	the	 ’s	are	functions	of	 	

‣ 	then	 	is	a	function	of	 	as	well	

How	to	find	 ?

y z1 z2 zi x
y x

∂y
∂x

						x

												 						z1 z2
∂y
∂x

=
∂y
∂z1

⋅
∂z1

∂x
+

∂y
∂z2

⋅
∂z2

∂x

							y

vumanfredi@wesleyan.edu

If	 	is	a	sum	of	functions	of	 ’s,	y zi y = f1(z1) + f2(z2)

and	 ’s	are	functions	of	 ,	zi x zi = gi(x)

then	 	is	a	function	of	 	as	well,	 	y x y = f1(g1(x)) + f2(g2(x))



32

Reminder:	chain	rule	of	derivatives
If	 	is	a	sum	of	functions	of	 ,	and	 	is	a	function	of	 		

‣ 	then	 	is	a	function	of	 	as	well	

How	to	find	 ?

y zi zi x
y x

∂y
∂x

						x

∂y
∂x

=
n

∑
i=1

∂y
∂zi

⋅
∂zi

∂x

							y

												 				 					z1 z2 … zn

vumanfredi@wesleyan.edu

If	 	is	a	sum	of	functions	of	 ’s,	y zi z = ∑ fi(yi)

and	 ’s	are	functions	of	 ,	zi x zi = gi(x)

then	 	is	a	function	of	 	as	well,	 	y x y = ∑ fi(gi(x))



BACKPROPAGATION	ALGORITHM
Neural	Networks



The	abstraction

Each	node	in	the	graph	knows	2	things:	
1. Forward	pass:	how	to	compute	value	of	a	function	with	

respect	to	its	inputs		
2. Backward	pass:	how	to	compute	partial	derivative	of	the	

output	with	respects	to	its	inputs	

These	can	be	defined	independently	of	what	happens	in	the	rest	
of	the	graph	

We	can	build	up	complicated	functions	using	simple	nodes	and	
compute	values	and	partial	derivatives	of	these	as	well

34vumanfredi@wesleyan.edu



35

Backpropagation	(of	errors)

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

L =
1
2

(y − y*)2

							y
	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

vumanfredi@wesleyan.edu

We	want	to	compute		 		and	
∂L

∂wo
ij

∂L
∂wh

ij

Important:	 	is	a	differentiable	function	
of	all	of	the	weights

L

Applying	the	chain	rule	to	compute	the	gradient	
(and	remembering	partial	computations	along	
the	way	to	speed	up	learning)



Reminder

Why	do	we	compute	gradient	of	loss	function	with	respect	
to	weights?	

Want	to	find	values	of	weights	that	minimize	loss	function.	

By	updating	weights	in	opposite	direction	of	this	gradient,	
takes	a	step	closer	to	minimum		

36vumanfredi@wesleyan.edu



37

Backpropagation:	output	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

L =
1
2

(y − y*)2

							y

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

vumanfredi@wesleyan.edu

		
∂L

∂wo
0,1

		=
∂L
∂y

⋅
∂y

∂wo
0,1

		
∂L
∂y

= y − y*
		

∂y
∂wo

0,1
= 1



38

Backpropagation:	output	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

L =
1
2

(y − y*)2

							y

vumanfredi@wesleyan.edu

		
∂L

∂wo
1,1

		=
∂L
∂y

⋅
∂y

∂wo
1,1

		
∂L
∂y

= y − y*

We	have	already	
computed	this	partial	
derivative	for	the	previous	
case.	Cache	to	speed	up!

		
∂y

∂wo
1,1

= z1

Where	do	we	get	
value	of	 	from?	z1

Compute	during	forward	pass!	
If	you	compute	something	
keep	it	around,	may	be	useful

y = wo
0,1 + wo

1,1z1 + wo
2,1z2



39

3	min:	what	is	 ?∂L/∂wo
2,1

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

L =
1
2

(y − y*)2

							y

vumanfredi@wesleyan.edu

		
∂L

∂wo
2,1

		=
∂L
∂y

⋅
∂y

∂wo
2,1

		
∂L
∂y

= y − y* 		
∂y

∂wo
2,1

= z2

Computed	during	
forward	pass!

y = wo
0,1 + wo

1,1z1 + wo
2,1z2



40

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)

L =
1
2

(y − y*)2

We	want	to	compute		 	
∂L

∂wh
22

But	 	is	not	a	function	of	 ,	is	
only	a	function	of	

L wh
22

y



41

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

=
∂L
∂y

⋅
∂y

∂wh
2,2

	is	not	a	function	of	
	so	can	eliminate	

term	(like	a	constant)	

z1
wh

2,2

		=
∂L
∂y

⋅
∂

∂wh
2,2

(wo
0,1 + wo

1,1z1 + wo
2,1z2)

		=
∂L
∂y

⋅ (wo
1,1

∂
∂wh

2,2
z1 + wo

2,1
∂

∂wh
2,2

z2)

0

So	apply	chain	rule

Substitute	in	for	y

Derivative	of	sum	is	
sum	of	derivatives

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



42

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

=
∂L
∂y

⋅
∂y

∂wh
2,2

		=
∂L
∂y

⋅
∂

∂wh
2,2

(wo
0,1 + wo

1,1z1 + wo
2,1z2)

		=
∂L
∂y

⋅ wo
2,1

∂z2

∂wh
2,2

		=
∂L
∂y

⋅ wo
2,1

∂z2

∂s
∂s

∂wh
2,2

σ(s)

	is	neuron	with	sigmoid	
activation	applied	to	
linear	transformation	

z2

Compute	gradient	of	
	with	respect	to	z2 s

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



43

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

		=
∂L
∂y

⋅ wo
2,1

∂z2

∂s
∂s

∂wh
2,2

Each	of	these	partial	derivatives	is	easy!

σ(s)
Compute	gradient	of	

	with	respect	to	z2 s

from	previous	slide

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



44

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

		=
∂L
∂y

⋅ wo
2,1

∂z2

∂s
∂s

∂wh
2,2

σ(s)from	previous	slide

		
∂L
∂y

= y − y*
		

∂z2

∂s
= z2(1 − z2)

		
∂s

∂wh
2,2

= x2

Because	 	is	

the	sigmoid	function	which	has	
the	derivative	

z2 = σ(s) =
1

1 + e−s

σ(s)(1 − σ(s))

Importantly:	we	have	already	computed	many	of	these	partial	derivatives	
because	we	are	proceeding	from	top	to	bottom	(i.e.,	backwards).	And	

calculations	can	be	vectorized	for	efficient	computation	on	GPUs

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



45

Backpropagation:	hidden	layer

													 													z0 z1 z2

output

													 													x0 x1 x2

			 					 						wout
0,1 wout

1,1 wout
2,1

			 																													wh
0,1 wh

2,2

							y

vumanfredi@wesleyan.edu

L =
1
2

(y − y*)2

		
∂L

∂wh
2,2

		=
∂L
∂y

⋅ wo
2,1

∂z2

∂s
∂s

∂wh
2,2

σ(s)from	previous	slide

		
∂L
∂y

= y − y*
		

∂z2

∂s
= z2(1 − z2)

		
∂s

∂wh
2,2

= x2

Because	 	is	

the	sigmoid	function	which	has	
the	derivative	

z2 = σ(s) =
1

1 + e−s

σ(s)(1 − σ(s))

Question:	what	gets	computed	if	predicted	output	 	perfectly?	y
Multiply	by	0	so	no	update!

	

	

	

y = wo
0,1 + wo

1,1z1 + wo
2,1z2

z2 = σ(wh
0,2 + wh

1,2x1 + wh
2,2x2)

z1 = σ(wh
0,1 + wh

1,1x1 + wh
2,1x2)



Stochastic	gradient	descent
Given	a	training	set	 	
1. Initialize	parameters	 	
2. For	epoch	 	

‣ Shuffle	the	training	set	
‣ For	each	training	example	 :	

➡	Treat	this	example	as	the	entire	dataset	
					Compute	the	gradient	of	the	loss	 	using			
					backpropagation	

➡	Update	 	

Return	 	

S = {(xi, yi)}, x ∈ ℜd

w
= 1…T :

(xi, yi) ∈ S

∇L(NN(xi, w), yi)

w ← w − γt ∇L(NN(xi, w), yi)

w

46

min
w ∑

i

L(NN(xi, w), yi)

:	learning	rate,	many	
tweaks	possible
γt

vumanfredi@wesleyan.edu

The	objective	is	not	convex	
Initialization	can	be	important



Backpropagation	algorithm

The	same	algorithm	works	for	multiple	layers	and	more	
complicated	architectures	

Repeated	application	of	the	chain	rule	for	partial	derivatives	
‣ First	perform	forward	pass	from	inputs	to	the	output	
‣ Compute	loss	
‣ From	loss,	proceed	backwards	to	compute	partial	
derivatives	using	chain	rule	

‣ Cache	partial	derivatives	as	you	compute	them	to	use	
for	lower	layers

47vumanfredi@wesleyan.edu



Mechanizing	learning
Backpropagation	gives	gradient	that	will	be	used	for	gradient	descent	

‣ SGD	gives	a	generic	learning	algorithm	
‣ Backpropagation	is	a	generic	method	for	computing	partial	
derivatives	

A	recursive	algorithm	that	works	from	top	of	neural	network	to	bottom	

Modern	neural	network	libraries	implement	automatic	differentiation	
using	backpropagation	

‣ Allows	easy	exploration	of	network	architectures	
‣ Don’t	have	to	keep	deriving	gradients	by	hand	each	time	

48vumanfredi@wesleyan.edu


