
Lecture 15: LMS Regression and Gradient
Descent

COMP 343, Spring 2022
Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	material	from	the	book	
Machine	Learning	by	Tom	Mitchell	(and	associated	slides),	the	book	Machine	

Learning,	An	Applied	Mathematics	Introduction	by	Paul	Wilmott,	slides	created	by	
Vivek	Srikumar	(Utah),	Dan	Roth	(Penn),	Julia	Hockenmaier	(Illinois	Urbana-

Champaign),	Jessica	Wu	(Harvey	Mudd)	and	C.	David	Page	(U	of	Wisconsin-Madison)

vumanfredi@wesleyan.edu

Today’s	Topics

Midterm	
– Wednesday,	March	30	

Linear	Regression		
– Gradient	descent	
– Example	
– Convergence	
– Stochastic	gradient	descent	
– Regularization

Recap

4

Evaluation	metrics	(for	classification)

To	evaluate	model,	compare	predicted	labels	to	actual

Accuracy:	proportion	of	examples	where	
we	predicted	correct	label

Error:	proportion	of	examples	where	we	
predicted	incorrect	label

accuracy =
#	of	correct	predicUons

#	of	examples

Pr
ed

ic
tio

n

La
be

l

accuracy =
#	of	incorrect	predicUons

#	of	examples

error = 1−accuracy

5

Precision-Recall	analysis

Precision(label) =
	Correct	predicUons(label)

	Correct	predicUons(label) + 	Incorrect	predicUons(label)

Recall(label) =
	Correct	predicUons(label)

	Correct	predicUons(label) + 	Missed	examples(label)

By	default,	precision	and	recall	computed	for	the	positive	label,	as	that	is	
usually	the	case	of	interest	and	the	one	usually	with	fewer	example	(e.g.,	
diagnosing	diseases	in	patients,	identifying	spam	emails)

What	fraction	of	class	“label”	examples	did	the	classifier	discover?	

What	fraction	of	classifier’s	predictions	of	class	“label”	were	correct	

6

Combining	into	one	number

Sometimes	easier	to	work	with	a	single	number	as	
performance	measure	

F1	score	balances	precision	and	recall:	harmonic	mean	of	
precision	and	recall	

	

Training	to	minimize	F1	is	difficult,	but	can	choose	hyper	
parameters	for	which	F1	is	maximized

f1 =
2pr

p + r

Linear	regression
Inputs	are	feature	vectors:	 	
Outputs	are	real	numbers:	 	

We	have	a	training	data	set:	
	

We	want	to	approximate	 	as	
								 	

																 	
	is	the	learned	weight	vector	in	 	

x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd

y = wTx
w ℜd

For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier	

												 	xi =

1
x1
x2
⋮
xd

Making	assumption	that	output	 	is	
a	linear	function	of	the	features	

y
x

Goal:	use	the	training	data	to	find	the	best	possible	value	of	 	w

If	our	hypothesis	space	is	linear	functions	…
How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

(xi, yi)
|yi − wTxi |

8

x2

y
True	
output

Predicted	
output

How	far	apart	is	true	from	
predicted	in	absolute	sense?	
If	very	different	then	weight	
vector	is	probably	not	very	good	

	
	

|yi − wT
1 xi | = 60000

|yi − wT
2 xi | = 0.1

	
	

|yi+1 − wT
1 xi+1 | = 0.1

|yi+1 − wT
2 xi+1 | = 0.3

But	could	also	be	that	weight	vector	is	just	bad	for	that	example

How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be	

	

One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

9

This	tells	us	how	good	
for	one	example

This	tells	us	how	
good	for	 	examplesm

Squared	error	is	a	popular	loss	
function:	sum	of	squared	costs	
over	the	training	set.	Dividing	
by	2	rather	than	m	will	make	
our	math	work	out	nicely	later

How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be	

	

One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

10

Function	of	functions	
	is	a	function	that	evaluates	how	good	other	
functions	or	regressors	are,	e.g.,	 .	Every	
choice	of	 	gives	a	different	regressor.	So	 	
evaluates	how	good	a	regressor	is.	

J
wTx

w J
J(f) =

1
2

m

∑
i=1

(yi − f(xi))2

How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?	

For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is		
	

Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be	

	

One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

11

This	is	called	Least	Mean	Squares	(LMS)	Regression

																				 	=	 	

Different	strategies	exist	for	learning	by	optimization	
• Gradient	descent:	is	a	popular	algorithm	
• Matrix	inversion:	for	this	particular	minimization	objective,	
there	is	also	an	analytical	solution;	no	need	for	gradient	
descent:	 	

min
w

J(w) min
w

1
2

m

∑
i=1

(yi − wTxi)2

b = (XT X)−1XTY

12

Goal	of	learning:		minimize	mean	squared	error

‣ This	is	just	the	training	objective:	you	can	use	different	learning	
algorithms	to	minimize	this	objective		

‣ Properties	of	 :	differentiable	and	convex.	Lower	values	
mean	better	weight	vector	 ,	i.e.,	regressor.	

‣ Mathematical	optimization:	focuses	on	solving	problems	of	the	
form	 .	So	many	algorithms	exist	to	solve	problem

J(w)
w

min
w

J(w)

This	is	called	Least	Mean	Squares	(LMS)	Regression

																				 	=	 	

Different	strategies	exist	for	learning	by	optimization	
• Gradient	descent:	is	a	popular	algorithm	
• Matrix	inversion:	for	this	particular	minimization	objective,	
there	is	also	an	analytical	solution;	no	need	for	gradient	
descent:	 	

min
w

J(w) min
w

1
2

m

∑
i=1

(yi − wTxi)2

b = (XT X)−1XTY

13

Goal	of	learning:		minimize	mean	squared	error

Different	strategies	exist	for	learning	by	optimization	
‣ Gradient	descent:	is	a	popular	algorithm	
‣ Matrix	inversion:	for	this	particular	minimization	
objective,	there	is	also	an	analytical	solution;	no	need	for	
gradient	descent:	b = (XT X)−1XTY

GRADIENT	DESCENT
Linear	Regression

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

15

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	gradient	of	a	function?	
In	2-dimensions:	slope	of	a	line		
In	higher	dimensions:	direction	of	steepest	ascent,	that	is,	
direction	in	which	function	grows	the	fastest	

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

16

 J(w)

w
w4 w3 w2 w1

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

Pick	point	 	
Gradient	points	in	
direction	function	
grows

w1

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

17

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1Gradient	descent:	initialize	your	
starting	point	for	search	for	
minimum	anywhere

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

18

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

Then	at	every	point,	compute	the	gradient	(the	arrow),	and	take	
a	step	in	direction	away	from	gradient	(i.e.,	move	to	a	point	
where	value	of	function	is	lower)

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

19

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

Keep	repeating	…

Gradient	descent
General	strategy	for	minimizing	a	
function	 	

1. Start	with	an	initial	guess	for	
,	say	 	

2. Iterate	until	convergence:	
– Compute	the	gradient	of	 	at	 	

– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

20

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

And	eventually	you	will	get	to	minimum

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	
– Compute	gradient	of	 	at	 .	Call	it	 	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(a	small	constant)

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

w
wt+1 = wt − r∇J(wt)

r

21

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Initialize	to	zeroes	or	random		
(convex	function,	so	doesn’t	matter	where	initialized)

Grad	 	or	Nabla	J J

Use	“-“	since	step	is	in	opposite	direction	

	

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	
– Compute	gradient	of	 	at	 .	Call	it	 	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(a	small	constant)

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

w
wt+1 = wt − r∇J(wt)

r

22

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	the	gradient	of	 ?J

Gradient	of	the	cost	 	at	point	J w
Remember	that	 	is	a	vector	with	 	elements		

	

To	find	the	best	direction	in	the	weight	space	 	we	compute	the	
gradient	of	 	with	respect	to	each	of	the	components	of	

	 	

This	vector	specifies	the	direction	that	produces	the	steepest	
increase	in	 .	We	want	to	modify	 		in	the	direction	of	 ,	
where	(with	a	fixed	step	size):	
	 	

w d
w = [w1, w2, w3, …, wj, …, wd]

w
J

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

J w −∇J(w)
r

wt+1 = wt − r∇J(wt)

23

	is	a	function	that	maps	 	to	
real	number	(the	total	cost)
J w

Remember	that	 	is	a	vector	with	 	elements		

	

To	find	the	best	direction	in	the	weight	space	 	we	compute	the	
gradient	of	 	with	respect	to	each	of	the	components	of	

	 	

This	vector	specifies	the	direction	that	produces	the	steepest	
increase	in	 .	We	want	to	modify	 		in	the	direction	of	 ,	
where	(with	a	fixed	step	size):	
	 	

w d
w = [w1, w2, w3, …, wj, …, wd]

w
J

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

J w −∇J(w)
r

wt+1 = wt − r∇J(wt)

24

Gradient	of	the	cost	 	at	point	J w

Gradient	will	be	vector	with	
	elements	since	 	is	a	

vector	with	 	elements
d w

d

Need	to	compute	every	element	of 	to	define	gradient∇J(wt)

Each	element	is	a	
partial	derivative

The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wT xi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij

25

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2Gradient	of	the	cost	 	at	point	J w

Let’s	compute	gradient	for	 th	weightj

The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij

26

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2Gradient	of	the	cost	 	at	point	J w

Gradient	of	sum	is	just	the	sum	of	gradients	
so	move	partial	derivative	inside

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij

27

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Expanded	dot	product
Apply	chain	rule	for	derivative

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij

28

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Expanded	dot	product
Apply	chain	rule	for	derivatives

Only	one	element	
depends	on	j

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij

29

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Only	one	element	
depends	on	j

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wTxi)xij

30

We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Move	2	and	minus	outside,	2s	cancel

																																																			

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wTxi)xij

31

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	of	
the	gradient	vector

Sum	of Error					x					Input

																																																			

Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 	

	

			 	

		 	

	

	

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wTxi)xij

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	of	
the	gradient	vector

Sum	of Error					x					Input

Negative	of	this	gradient	is	how	much	to	
change	 th	weightj

Larger	features	()	with	larger	errors	will	cause	larger	changexij

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

w
wt+1 = wt − r∇J(wt)

r

33

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

∇J(wt) = [∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd]

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

w
wt+1 = wt − r∇J(wt)

r

34

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

Take	step	in	opposite	direction	
of	gradient,	so	minus

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

w
wt+1 = wt − r∇J(wt)

r

35

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

Take	step	in	opposite	direction	
of	gradient,	so	minus

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

where	 	is	the	learning	rate	(for	now	a	small	constant)	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

w
wt+1 = wt − r∇J(wt)

r

36

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

After	computing	error	for	all	training	examples,	get	vector	that	
you	use	to	update	weights	all	at	once:	basically	a	batch

EXAMPLE
Gradient	Descent

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

38

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

39

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

x1 =
x10
x11
x12

=
1

31.5
6

Example	
index

Feature	
index

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

40

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

x1 =
x10
x11
x12

=
1

31.5
6

What	does	weight	vector	look	like?	

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

41

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

42

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

How	do	we	update	weights?

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

43

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

wt+1 = wt − r∇J(wt)

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

One	element	
of	∇J(wt)

∇J(wt) = [∂J
∂w0

,
∂J

∂w1
,

∂J
∂w2]

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

44

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

wt+1 = wt − r∇J(wt)

∇J(wt) = [∂J
∂w0

,
∂J

∂w1
,

∂J
∂w2]

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

45

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

∂J
∂w1

= −
m

∑
i=1

(yi − wTxi)xi1

∂J
∂w2

= −
m

∑
i=1

(yi − wTxi)xi2

w0 =
w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0

∂J
∂wj

= −
m

∑
i=1

(yi − wTxi)xij

wt+1 = wt − r∇J(wt)

∇J(wt) = [∂J
∂w0

,
∂J

∂w1
,

∂J
∂w2]

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

46

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0

= − (y1 − wTx1)x10 − (y2 − wTx2)x20 − (y3 − wTx3)x30 − (y4 − wTx4)x40

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

47

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

∂J
∂w1

= −
m

∑
i=1

(yi − wTxi)xi1

∂J
∂w2

= −
m

∑
i=1

(yi − wTxi)xi2

w0 =
w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

= − (y1 − wTx1)x11 − (y2 − wTx2)x21 − (y3 − wTx3)x31 − (y4 − wTx4)x41

= − (y1 − wTx1)x12 − (y2 − wTx2)x22 − (y3 − wTx3)x32 − (y4 − wTx4)x42

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0

= − (y1 − wTx1)x10 − (y2 − wTx2)x20 − (y3 − wTx3)x30 − (y4 − wTx4)x40

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

48

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

= − (21 − wTx1)1 − (25 − wTx2)1 − (18 − wTx3)1 − (30 − wTx4)1

= − 94

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0

= − (y1 − wTx1)x10 − (y2 − wTx2)x20 − (y3 − wTx3)x30 − (y4 − wTx4)x40

= − (21 − 0)1 − (25 − 0)1 − (18 − 0)1 − (30 − 0)1

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

49

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

∂J
∂w1

= −
m

∑
i=1

(yi − wTxi)xi1

w0 =
w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

= − (y1 − wTx1)x11 − (y2 − wTx2)x21 − (y3 − wTx3)x31 − (y4 − wTx4)x41

= − (21 − wTx1)31.5 − (25 − wTx2)36.2 − (18 − wTx3)43.1 − (30 − wTx4)27.6
= − (21 − 0)31.5 − (25 − 0)36.2 − (18 − 0)43.1 − (30 − 0)27.6
= − 661.5 − 905 − 775 − 828
= − 3169.5

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

50

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

= − (21 − wTx1)6 − (25 − wTx2)2 − (18 − wTx3)0 − (30 − wTx4)2

= − 126 − 50 − 0 − 60
= − 236

∂J
∂w2

= −
m

∑
i=1

(yi − wTxi)xi2

= − (y1 − wTx1)x12 − (y2 − wTx2)x22 − (y3 − wTx3)x32 − (y4 − wTx4)x42

= − (21 − 0)6 − (25 − 0)2 − (18 − 0)0 − (30 − 0)2

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

51

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1 w0 =

w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

∇J(wt) = [∂J
∂w0

,
∂J

∂w1
,

∂J
∂w2]

∂J
∂w1

= −
m

∑
i=1

(yi − wTxi)xi1 = − 3169.5

∂J
∂w2

= −
m

∑
i=1

(yi − wTxi)xi2 = − 236

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0 = − 94wt+1 = wt − r∇J(wt)

What’s	the	mileage?
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

52

Weight		
(x	100	lb)

Age	
(years)

Mileage	
per	gallon

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

x1
x2
x3
x4

x11
x21
x31
x41

x12
x22
x32
x42

x10 = 1
x20 = 1
x30 = 1
x40 = 1

∇J(wt) = [−94,3169.5, − 236]

w0 =
w0
w1
w2

= [
0
0
0]

x1 =
x10
x11
x12

=
1

31.5
6

∂J
∂w1

= −
m

∑
i=1

(yi − wTxi)xi1 = − 3169.5

∂J
∂w2

= −
m

∑
i=1

(yi − wTxi)xi2 = − 236

∂J
∂w0

= −
m

∑
i=1

(yi − wTxi)xi0 = − 94wt+1 = wt − r∇J(wt)

wt+1 = [
0
0
0] − r

−94
−3169.5

−236

=
94

3169.5
236

CONVERGENCE
Gradient	Descent

How	to	improve	likelihood	of	convergence	

‣ Normalize	values	of	features	and	labels:	Important	to	normalize	
features	when	using	gradient	descent	(otherwise	takes	longer	to	
converge).	All	features	should	have	a	similar	scale	

‣ Decrease	learning	rate	over	time	

‣ Check	for	weights	converging	

‣ Cross-validation	to	determine	how	best	to	set	hyper-parameters	
like	number	of	epochs	or	learning	rate

54

Learning	Rates	and	Convergence

▪ In	the	general	(“non-separable”)	case	the	learning	rate	
	must	decrease	to	zero	to	guarantee	convergence.	

▪ The	learning	rate	is	called	the	step	size.	There	are	more	
sophisticated	algorithms	that	choose	the	step	size	
automatically	and	converge	faster.		

▪ Choosing	a	better	starting	point	also	has	impact.	

r

55

Impact	of	learning	rate

Cost

w

Learning	rate	
too	large	

Cost

w

Learning	rate	
too	small

Random	initial	value Random	initial	value

Gradient	descent

Algorithm	is	guaranteed	to	converge	to	the	minimum	of	
	if	learning	rate	 	is	small	enough	(small	enough	steps)	
or	the	learning	rate	is	decreased	appropriately		

Why?	The	objective	 	is	a	convex	function	here	(LMS	for	
linear	regression):	the	surface	contains	only	a	single	
global	minimum.	The	surface	may	have	local	minimum	if	
the		loss	function	is	different.	

J r

J

57

Decreasing	learning	rate	over	time

In	order	to	guarantee	that	the	algorithm	will	converge,	the	
learning	rate	should	decrease	over	time.	Here	is	a	general	
formula	

‣ At	iteration	 	

	where		

		
	

t

rt =
c1

ta + c2

0.5 < a < 2
c1 > 0
c2 ≥ 0

58

When	should	algorithm	stop?

1. Stop	after	fixed	number	of	iterations	

2. Stop	once	prediction	error	is	less	than	threshold	

3. Stop	when	validation	loss	stops	changing

59

Stopping	criteria

For	most	functions,	you	probably	won’t	get	the	gradient	
to	be	exactly	equal	to	 	in	a	reasonable	amount	of	time	

Once	the	gradient	is	sufficiently	close	to	 ,	stop	trying	to	
minimize	further	

How	do	we	measure	how	close	a	gradient	is	to	 ?	
Gradient	is	just	a	vector,	so	can	compute	distance.

0

0

0

60

Distance
(x2, y2)

(x1, y1)
x2 − x1

y2 − y1

dHow	far	apart	are	two	points?	

Euclidean	distance	between	2	points	in	2	dimensions:	

		

In	3	dimensions	():	

(x2 − x1)2 + (y2 − y1)2

x, y, z

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Distance

General	formula	for	Euclidean	distance	between	2	points	
with	 	dimensions:	

	

where	 	and	 	are	2	points	(each	represents	a	
-dimensional	vector)	

k

d(p, q) =
k

∑
i=1

(pi − qi)2

p q k

Distance

A	special	case	is	the	distance	between	a	point	and	zero	
(the	origin)	

				also	written	 	

This	is	called	the	Euclidean	norm	of	 	
‣ A	norm	is	a	measure	of	a	vector’s	length	
‣ The	Euclidean	norm	is	also	called	the	L2	norm

d(p, 0) =
k

∑
i=1

p2
i | |p | |

p

63

Stopping	criteria

Stop	when	the	norm	of	the	gradient	is	below	some	
threshold,	 :	

				

Common	values	of	 	are	around	.01,	but	if	it	is	taking	too	
long,	you	can	make	the	threshold	larger

θ

| |∇L(w) | | < θ

θ

64

Gradient	descent

1. Initialize	the	parameters	 	to	some	guess	(usually	all	zeroes,	
or	random	values)	

2. Update	the	parameters:	
	

	

3. Repeat	step	2	until 	or	until	the	maximum	
number	of	iterations	is	reached	

w

w = w − r∇L(w)

rt =
c1

ta + c2

| |∇L(w) | | < θ

65

INCREMENTAL/STOCHASTIC	
GRADIENT	DESCENT

Linear	Regression

Gradient	descent	for	LMS

1. Initialize	 	

2. For	 	until	error	is	below	a	threshold	
– Compute	gradient	of	 	at	 .	Call	it	 	

Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector	

	

– Update	 	as	follows:	

	 	

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

67

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

The	weight	vector	is	not	updated	
until	all	errors	are	calculated.	

Why	not	make	early	updates	to	the	
weight	vector	as	soon	as	we	

encounter	errors	instead	of	waiting	
for	a	full	pass	over	the	data?

Incremental/stochastic	gradient	descent

Repeat	for	each	example	 	
‣ Pretend	that	entire	training	set	is	represented	by	
this	single	example	

‣ Use	this	example	to	calculate	the	gradient	and	
update	the	model	

Contrast	with	batch	gradient	descent	which	makes	one	
update	to	the	weight	vector	for	every	pass	over	the	data	

(xi, yi)

68

Incremental/stochastic	gradient	descent
1. Initialize	 			

2. For	 	until	error	is	below	a	threshold	
– For	each	training	example	 ,	update	 .	For	each	element	of	the	weight	

vector	()		

	

May	get	close	to	optimum	much	faster	than	the	batch	version.	In	general	-	does	not	
converge	to	global	minimum.	Decreasing	 	with	time	guarantees	convergence.			But,	
online/incremental	algorithms	are	often	preferred	when	the	training	set	is	very	large	

w

t = 0,1,2,…
(xi, yi) w

wj

wt+1
j = wt

j − r(yi − wTxi)xij

r

69

Contrast	with	the	previous	method,	
where	the	weights	are	updated	only	
after	all	examples	are	processed	once	

Incremental/stochastic	gradient	descent
1. Initialize	 			

2. For	 	until	error	is	below	a	threshold	
– For	each	training	example	 ,	update	 .	For	each	element	of	the	weight	

vector	()		

	

May	get	close	to	optimum	much	faster	than	the	batch	version.	In	general	-	does	not	
converge	to	global	minimum.	Decreasing	 	with	time	guarantees	convergence.			But,	
online/incremental	algorithms	are	often	preferred	when	the	training	set	is	very	large	

w

t = 0,1,2,…
(xi, yi) w

wj

wt+1
j = wt

j − r(yi − wTxi)xij

r

70

This	update	rule	is	also	called	the	Widrow-Hoff	
rule	in	the	neural	networks	literature

vumanfredi@wesleyan.edu 71

Linear	regression:	summary

▪ What	we	want:	predict	a	real-valued	output	using	
feature	representation	of	the	input	

▪ Assumption:	output	is	a	linear	function	of	the	inputs		

▪ Learning	by	minimizing	total	cost	
– gradient	descent	and	stochastic	gradient	descent	to	find	the	
best	weight	vector	

– This	particular	optimization	can	be	computed	directly	by	
framing	the	problem	as	a	matrix	problem

REGULARIZATION
Linear	Regression

vumanfredi@wesleyan.edu 73

Generalization

▪ Prediction	functions	that	work	on	the	training	data	
might	not	work	on	other	data		

▪ Minimizing	the	training	error	is	a	reasonable	thing	to	
do,	but	it’s	possible	to	minimize	it	“too	well”		

▪ Overfitting:	your	function	matches	the	training	data	
well	but	is	not	learning	general	rules	that	will	work	for	
new	data

vumanfredi@wesleyan.edu 74

Regularization

▪ Modify	learning	algorithm	to	favor	“simpler”	prediction	
rules	to	avoid	overfitting	

▪ Most	commonly,	regularization	refers	to	modifying	the	
loss	function	to	penalize	certain	values	of	the	weights	
you	are	learning.	Specifically,	penalize	weights	that	are	
large.	

Regularization

▪ How	do	we	define	whether	weights	are	large?	

	

▪ This	is	called	the	L2	norm	of	 	
– A	norm	is	a	measure	of	a	vector’s	length	
– Also	called	the	Euclidean	norm	

d(w, 0) =
k

∑
i=1

(wi)2 = | |w | |

w

75vumanfredi@wesleyan.edu

Note	that	bias	
term	 	is	not	
regularized	

w0

Regularization

▪ New	goal	for	minimization	
	L(w) + λ | |w | |2

76vumanfredi@wesleyan.edu

This	is	whatever	
loss	function	we	

are	using

By	minimizing	this	we	prefer	
solutions	where	 	is	closer	to	w 0

	is	a	hyperparameter	that	adjusts	
trade-off	between	low	training	loss	

and	having	low	weights

λ

Square	to	eliminate	square	root:	
easier	to	work	with	mathematically

vumanfredi@wesleyan.edu 77

Regularization

▪ Regularization	helps	the	computational	problem	
because	gradient	descent	won’t	try	to	make	some	
feature	weights	grow	larger	and	larger	

▪ At	some	point,	the	penalty	of	having	too	large	 	
will	outweigh	whatever	gain	you	would	make	in	your	
loss	function.	

| |w | |2

vumanfredi@wesleyan.edu 78

Regularization

▪ This	also	helps	with	generalization	because	it	won’t	
give	large	weight	to	features	unless	there	is	sufficient	
evidence	that	they	are	useful		

▪ The	usefulness	of	a	feature	toward	improving	the	loss	
has	to	outweigh	the	cost	of	having	large	feature	
weights	

Regularization

▪ More	generally	
	L(w) + λR(w)

79vumanfredi@wesleyan.edu

This	is	called	the	regularization	
term	or	regularizer	or	penalty.		
The	squared	L2	norm	is	one	kind	
of	penalty,	but	there	are	others	is	called	the	regularization	strength.	

	Other	common	names	for	λ:		alpha	in	
sklearn,	C	in	many	algorithms.	Usually	C	

actually	refers	to	the	inverse	regularization	
strength,	1/λ.	Figure	out	which	one	your	
implementation	is	using	(whether	this	will	

increase	or	decrease	regularization)		

λ

vumanfredi@wesleyan.edu 80

L2	Regularization

▪ When	the	regularizer	is	the	squared	L2	norm	 ,	this	is	
called	L2	regularization.	

▪ This	is	the	most	common	type	of	regularization		

▪ When	used	with	linear	regression,	this	is	called	Ridge	regression		

▪ Logistic	regression	implementations	usually	use	L2	regularization	
by	default		

▪ L2	regularization	can	be	added	to	other	algorithms	like	
perceptron	(or	any	gradient	descent	algorithm)	

| |w | |2

vumanfredi@wesleyan.edu 81

L2	Regularization

▪ The	function	 is	convex,	so	if	it	is	added	
to	a	convex	loss	function,	the	combined	function	will	
still	be	convex.

R(w) = | |w | |2

vumanfredi@wesleyan.edu 82

L1	Regularization

▪ Another	common	regularizer	is	the	L1	norm:	

	

▪ When	used	with	linear	regression,	this	is	called	Lasso	

▪ Often	results	in	many	weights	being	exactly	0	(while	L2	
just	makes	them	small	but	nonzero)

| |w | |1 =
k

∑
j=1

|wj |

vumanfredi@wesleyan.edu 83

L1+L1	Regularization

▪ L2	and	L1	regularization	can	be	combined	
	

▪ Also	called	ElasticNet	
▪ Can	work	better	than	either	type	alone	
▪ Can	adjust	hyperparameters	to	control	which	of	the	

two	penalties	is	more	important	
▪ Once	training	is	done,	remove	regularization	term	to	

measure	model	performance

R(w) = λ2 | |w | |2 + λ1 | |w | |1

vumanfredi@wesleyan.edu 84

Feature	normalization

▪ The	scale	of	the	feature	values	matters	when	using	
regularization	

▪ If	one	feature	has	values	between	[0,	1]	and	another	
between	[0,	10000],	the	learned	weights	might	be	on	
very	different	scales	–	but	whatever	weights	are	
“naturally”	larger	are	going	to	get	penalized	more	by	
the	regularizer.		

▪ Feature	normalization	or	standardization	refers	to	
converting	the	values	to	a	standard	range.	

