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Today’s	Topics

Midterm

– Wednesday,	March	30


Least	Mean	Squares	(LMS)	Regression	

– Overview

– Objective

– Gradient	descent

– Convergence

– Stochastic	gradient	descent

– Regularization



Recap



Learning	as	loss	minimization

The	setup

‣ Examples	 	with	labels	 	drawn	from	a	fixed,	unknown	distribution	 


‣ Hidden	oracle	classifier	 	labels	examples


‣ We	wish	to	find	a	hypothesis	 	that	mimics	 


The	ideal	situation

‣ Define	a	function	 	that	penalizes	bad	hypotheses


‣ Learning:	pick	a	function	 	to	minimize	expected	loss


x y P(X, Y )
f

h f

L
h ∈ H

min
h∈H ∑

(x,y)∈D

L( f(x), h(x))P(X = x, Y = y)

	is	set	of	all	possible	 	pairsD (x, y)

We	cannot	minimize	this	since	we	
don’t	know	 !P(X, Y )



Empirical	loss	minimization

Learning	=	minimize	empirical	loss	on	the	training	set





where	 	is	#	of	training	examples	 


Is	there	a	problem	here?	Overfitting!


min
h∈H

1
m ∑

i=1:m

L(h(xi), f(xi))

m {(xiyi)}i=1,m



What	is	a	loss	function?

Loss	functions	should	penalize	mistakes

‣ We	are	minimizing	average	loss	over	the	training	data





What	is	the	ideal	loss	function	for	classification?	

‣ What	loss	function	would	you	minimize	if	computation	
were	free?

min
h∈H

1
m ∑

i=1:m

L(h(xi), f(xi))



0-1	loss

Simplest	loss	function	counts	#	of	mistakes,	aka	0-1	loss:

‣ Penalizes	classification	mistakes	between	true	label	 	and	prediction	 





									


For	linear	classifiers	the	prediction	is	 


‣ Mistake	if	 





y y′￼

L0−1(y, y′￼) = {1 if	y ≠ y
0 if	y = y

y′￼= sgn(wTx)
ywTx ≤ 0

L0−1(y, y′￼) = {1 if	ywTx ≤ 0
0 otherwise
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‣ For	mistaken	prediction	
incur	a	penalty	of	1


‣ For	correct	prediction	
incur	no	penalty


L0−1(y, y′￼) = {1 if	ywTx ≤ 0
0 otherwise

0-1	loss



Problems	with	0-1	loss

‣ 0-1	loss	incurs	the	same	loss	value	of	1	for	all	wrong	predictions,	no	
matter	how	far	a	wrong	prediction	is	from	the	hyperplane


‣ Knowing	the	current	value	of	loss	function	doesn’t	indicate	how	to	
modify	current	weights	to	further	improve


‣ Computationally	intractable	to	minimize	0-1	loss	function:	with	 	
examples	need	to	check	 	permutations	(since	can’t	minimize	directly)


‣ What	can	we	do?	Make	some	assumptions:	minimize	“surrogate	
function”	that	is	good	enough


m
2m



A	solution	of	sorts

Minimize	a	new	function,	a	convex	upper	bound	of	classification	
error


Perceptron	loss	

‣ Penalizes	each	wrong	prediction	by	extent	of	violation

‣ The	perceptron	loss	function	is	defined	as	





where			 


‣ Note:	max	of	constant	and	linear	function	is	convex	function

1
m ∑

i=1:m

LP(yi, f(xi))

Lp(yi, f(xi)) = max(0, − yiwTxi)



Perceptron	loss

Loss	is	0	when	 	is	
correctly	classified

x

Lp(yi, f(xi)) = max(0, − yiwTxi)

Loss	is	proportional	
to	extent	of	violation	
( 	)	when	 	is	
incorrectly	classified
−yiwTxi x



Square	loss

yf(x)f(x)

Square	loss	as	a	function	of	yf(x)Square	loss	as	a	function	of	f(x)

Minimized	when	
y = − 1

Minimized	when	
y = + 1

Both	minimized	
when	y = + 1

y ∈ {−1,1}

The	square	loss	function	is	commonly	used	for	regression	problems




Square	loss	can	also	be	used	for	binary	classification	problems

 

LS(y, f(x)) = (y − f(x))2

LS(y, f(x)) = (1 − yf(x))2

Square	loss	tends	to	penalize	
wrong	predictions	excessively




What	is	our	goal?

Most	machine	learning	algorithms	are	some	combination	of	
a	loss	function	+	an	algorithm	for	finding	a	local	minimum.	


Our	goal	is	to	minimize	the	loss	function


‣ E.g.,	find	a	set	of	values	for	 	for	which	the	loss	from	
the	loss	function	is	a	minimum	


w

A	continuous	convex	loss	function	allows	a	simpler	
optimization	algorithm:	can	take	derivative	of	function




How	to	minimize	a	loss	function?

Goal:	find	weights	for	which	loss	is	(global)	minimum


Remember,	the	derivative	of	a	function	is	zero	at	any	local	
maximum	or	minimum.	So	one	way	to	find	a	minimum	is	to	
set	 	and	solve	for	 .	But	for	most	functions,	there	
isn’t	a	way	to	solve	this


Instead	use	gradient	descent:	algorithmically	search	
different	values	of	 	until	you	find	one	that	results	in	a	
gradient	near	0.	More	on	this	next	class


f′￼(w) = 0 w

w
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Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	
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Variance
What	if	the	performance	of	a	classifier	is	dependent	on	specific	training	set	
we	have?


‣ Perhaps	the	model	will	change	if	we	slightly	change	the	training	set	 

Variance	describes	how	much	the	best	classifier	depends	on	the	training	set	

‣ Increases	when	classifiers	become	more	complex:	with	sufficient	
complexity	classifier	can	just	remember	training	set


‣ Decreases	with	larger	training	sets:		probability	of	overfitting	a	
massive	training	set	is	low


Overfitting:	high	variance	 



Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?



OTHER	METRICS
Evaluation
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual

Accuracy:	proportion	of	examples	where	
we	predicted	correct	label

Error:	proportion	of	examples	where	we	
predicted	incorrect	label

accuracy =
#	of	correct	predictions

#	of	examples

Pr
ed

ic
tio

n

La
be

l

accuracy =
#	of	incorrect	predictions

#	of	examples

error = 1−accuracy
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual

Accuracy:	proportion	of	examples	where	
we	predicted	correct	label

Error:	proportion	of	examples	where	we	
predicted	incorrect	label

accuracy =
#	of	correct	predictions

#	of	examples

Pr
ed

ic
tio

n

La
be

l
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#	of	incorrect	predictions

#	of	examples

error = 1−accuracy
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Problem

Accuracy	or	error	may	not	always	be	the	right	way	to	
measure	performance	of	classifier	…


Suppose	#	of	examples	for	one	class	is	very	different	than	#	of	
examples	for	another	class


E.g.,	

‣ 99	examples	are	positive	

‣ 1	example	is	negative


Just	predicting	positive	for	every	example	gives	99%	accuracy!
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23

Another	problem

Accuracy	or	error	may	not	always	be	the	right	way	to	
measure	performance	of	classifier	…


Suppose	there	are	differential	misclassification	costs	–	say,	
getting	a	positive	wrong	costs	more	than	getting	a	negative	
wrong


‣ Consider	a	medical	domain	in	which	a	false	positive	
results	in	an	extraneous	test	but	a	false	negative	
results	in	a	failure	to	treat	a	disease
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The	beginnings	of	a	solution

Let’s	separately	ask	what	is	the	performance	of	
classifier	on	positive	labels	and	what	is	performance	
on	negative	labels.	


Or	more	generally,	let’s	ask	what	is	the	performance	
on	each	class	of	labels	separately
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B


‣ 10	examples	truly	labeled	A

‣ 90	examples	truly	labeled	B

‣ Classifier	predicts	A	for	8	examples.	


What	fraction	of	class	A	examples	did	the	classifier	discover?

‣ 10	examples	are	truly	labeled	A

‣ 8	of	truly	labeled	A	examples	found	by	classifier


What	fraction	of	classifier’s	predictions	of	class	A	were	correct

‣ 10	examples	are	truly	labeled	A

‣ 80	examples	are	labeled	A	by	classifier

Recall	is	80%

Precision	is	10%
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B


‣ 10	examples	truly	labeled	A

‣ 90	examples	truly	labeled	B

‣ Classifier	predicts	A	for	8	examples.	
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What	fraction	of	classifier’s	predictions	of	class	A	were	correct

‣ 10	examples	are	truly	labeled	A

‣ 80	examples	are	labeled	A	by	classifier Precision	is	10%
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Precision-Recall	analysis

Precision(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Incorrect	predictions(	label	)

Recall(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Missed	examples(	label	)

What	fraction	of	class	“label”	examples	did	the	classifier	discover?


What	fraction	of	classifier’s	predictions	of	class	“label”	were	correct
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Precision-Recall	analysis

Precision(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Incorrect	predictions(	label	)

Recall(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Missed	examples(	label	)

By	default,	precision	and	recall	computed	for	the	positive	label,	as	that	is	
usually	the	case	of	interest	and	the	one	usually	with	fewer	example	(e.g.,	
diagnosing	diseases	in	patients,	identifying	spam	emails)

What	fraction	of	class	“label”	examples	did	the	classifier	discover?


What	fraction	of	classifier’s	predictions	of	class	“label”	were	correct
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Combining	into	one	number

Sometimes	easier	to	work	with	a	single	number	as	
performance	measure


F1	score	balances	precision	and	recall:	harmonic	mean	of	
precision	and	recall





Training	to	minimize	F1	is	difficult,	but	can	choose	hyper	
parameters	for	which	F1	is	maximized

f1 =
2pr

p + r
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Practical	advice

What	measure	to	use	depends	on	domain	and	how	
balanced	your	dataset	is


All	labels	matter	and	dataset	is	balanced:	

‣ Use	accuracy


Not	all	labels	matter	or	dataset	not	balanced:	

‣ Use	precision,	recall,	F1



Material	up	to	this	point	will	be	on	exam




OVERVIEW
LMS	regression



Overview

Least	squares	method	for	regression

‣ Examples

‣ The	LMS	objective:	frame	learning	as	mathematical	
optimization


‣ Gradient	descent	algorithm	to	do	this	optimization

‣ Incremental/stochastic	gradient	descent	algorithm



Problem
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age

37

Weight	

(x	100	lb)


x1

Age

(years)

x2

Mileage

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30



Problem
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age
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Weight	

(x	100	lb)


x1

Age

(years)

x2

Mileage

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

What	we	want:	a	function	
that	can	predict	mileage	
using	 	and	x1 x2

What	kind	of	supervised	
learning	problem	do	we	
have?



Problem
Suppose	we	want	to	predict	the	mileage	of	a	car	from	its	weight	and	age
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Weight	

(x	100	lb)


x1

Age

(years)

x2

Mileage

31.5 6 21
36.2 2 25
43.1 0 18
27.6 2 30

What	we	want:	a	function	
that	can	predict	mileage	
using	 	and	x1 x2

Regression	problem:	
output	is	a	real	number



Example	regression	problems

Predict	housing	price	from	house	size,	lot	size,	rooms,	
neighborhood,	….


Predict	life	expectancy	increase	from	medication,	disease	
state,	…


Predict	crop	yield	from	precipitation,	fertilizer,	
temperature,	…
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Linear	regression:	The	strategy
Predict	continuous	values	using	a	linear	model


Assumption:		the	output	is	a	linear	function	of	the	inputs

Mileage	=	 


Learning:	use	the	training	data	to	find	the	best	possible	value	of	 


Prediction:	given	the	values	for	 	for	a	new	car,	use	the	
learned	 	to	predict	the	Mileage	for	the	new	car

w0 + w1x1 + w2x2

w

x1, x2
w

41

Restricting	hypothesis	space!

Among	all	possible	functions	that	take	 	and	 	and	produce	a	
real	number,	only	consider	functions	with	this	shape

x1 x2



Linear	regression:	The	strategy
Predict	continuous	values	using	a	linear	model
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Mileage	=	 
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w

x1, x2
w

42

Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w

Similar	to	what	we	assumed	with	linear	
classifier,	but	no	thresholding	here!



Linear	regression:	The	strategy
Predict	continuous	values	using	a	linear	model


Assumption:		the	output	is	a	linear	function	of	the	inputs

Mileage	=	 


What	is	the	goal	of	learning	now?


Prediction:	given	the	values	for	 	for	a	new	car,	use	the	
learned	 	to	predict	the	Mileage	for	the	new	car

w0 + w1x1 + w2x2

x1, x2
w
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Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w
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w0 + w1x1 + w2x2

w

x1, x2
w
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Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w



Linear	regression:	The	strategy
Predict	continuous	values	using	a	linear	model


Assumption:		the	output	is	a	linear	function	of	the	inputs

Mileage	=	 


Learning:	use	the	training	data	to	find	the	best	possible	value	of	 


How	do	we	do	prediction	now?

w0 + w1x1 + w2x2

w

45

Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w



Linear	regression:	The	strategy
Predict	continuous	values	using	a	linear	model
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w
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Parameters	of	the	model,	also	called	
weights.	Collectively,	a	vector	w



Linear	regression:	More	formally
Inputs	are	feature	vectors:	 

Outputs	are	real	numbers:	 


We	have	a	training	data	set:




We	want	to	approximate	 	as

								 


			 


	is	the	learned	weight	vector	in	 


We	can	write	compactly	as	

						 


x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd

f(x) = y = w1 +
d

∑
i=2

wjxj

w ℜd

f(x) = y = wTx
47

For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier


												 
xi =

1
x1
x2
⋮
xd

To	avoid	special	
treatment	of	w1



Linear	regression:	More	formally
Inputs	are	feature	vectors:	 

Outputs	are	real	numbers:	 


We	have	a	training	data	set:
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	is	the	learned	weight	vector	in	 


We	can	write	compactly	as	

						 


x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd

f(x) = y = w1 +
d

∑
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wjxj

w ℜd

f(x) = y = wTx
48

For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier


												 
xi =

1
x1
x2
⋮
xdLabels	are	real	

numbers	now



Linear	regression:	More	formally
Inputs	are	feature	vectors:	 

Outputs	are	real	numbers:	 


We	have	a	training	data	set:




We	want	to	approximate	 	as

								 


																 

	is	the	learned	weight	vector	in	 


x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd
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w ℜd
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For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier


												 
xi =

1
x1
x2
⋮
xd

Making	assumption	that	output	 	is	
a	linear	function	of	the	features	

y
x



Linear	regression:	More	formally
Inputs	are	feature	vectors:	 

Outputs	are	real	numbers:	 


We	have	a	training	data	set:




We	want	to	approximate	 	as

								 


																 

	is	the	learned	weight	vector	in	 


x ∈ ℜd

y ∈ ℜ

D = {(x1, y1), (x2, y2), ⋯, (xd, yd)}

y
y = w1 + w2x2 + ⋯ + wdxd
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For	simplicity,	we	will	assume	
that	the	first	feature	is	always	1,	
to	make	notation	easier


												 
xi =

1
x1
x2
⋮
xd

Making	assumption	that	output	 	is	
a	linear	function	of	the	features	

y
x

This	is	general	setup	for	linear	regression



Examples
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x2

y 1-dimensional	input

Suppose	you	have	a	set	of	points	….



Examples

52

x2

y 1-dimensional	input
Predict	using	y = w1 + w2x2

Linear	regression	predicts	
output	for	new	points	as	

values	on	line	

xnew

ypred



Examples
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x2

y 1-dimensional	input
Predict	using	y = w1 + w2x2

Keep	in	mind,	linear	function	is	not	
our	only	choice.	We	could	have	tried	
to	fit	the	data	as	another	polynomial

What	is	the	problem	with	using	increasingly	complicated	functions	here?

May	fit	the	data	perfectly,	but	also	fits	the	noise	 	bad	generalization⇒



Examples

54

x2

y 1-dimensional	input
Predict	using	y = w1 + w2x2

Keep	in	mind,	linear	function	is	not	
our	only	choice.	We	could	have	tried	
to	fit	the	data	as	another	polynomial

What	is	the	problem	with	using	increasingly	complicated	functions	here?

May	fit	the	data	perfectly,	but	also	fits	the	noise	 	bad	generalization

Using	linear	functions	is	a	hypothesis	choice,	may	not	always	be	best

⇒



Examples
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x2

y 1-dimensional	input
Predict	using	y = w1 + w2x2

Predict	using	y = w1 + w2x2 + w3x3

2-dimensional	input

x2

x3

y

weight

age

years



OBJECTIVE
Linear	Regression



If	our	hypothesis	space	is	linear	functions	…
How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




(xi, yi)
|yi − wTxi |

57

x2

y
True	output Predicted	output

Or	even,	what	makes	a	
weight	vector	a	good	one



If	our	hypothesis	space	is	linear	functions	…
How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




(xi, yi)
|yi − wTxi |

58

x2

y
True	
output

Predicted	
output

How	far	apart	is	true	from	
predicted	in	absolute	sense?

If	very	different	then	weight	
vector	is	probably	not	very	good




If	our	hypothesis	space	is	linear	functions	…
How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




(xi, yi)
|yi − wTxi |
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x2

y
True	
output

Predicted	
output

How	far	apart	is	true	from	
predicted	in	absolute	sense?

If	very	different	then	weight	
vector	is	probably	not	very	good







|yi − wT
1 xi | = 60000

|yi − wT
2 xi | = 0.1






|yi+1 − wT
1 xi+1 | = 0.1

|yi+1 − wT
2 xi+1 | = 0.3

But	could	also	be	that	weight	vector	is	just	bad	for	that	example



How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be





One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

60

This	tells	us	how	good	
for	one	example

This	tells	us	how	
good	for	 	examplesm

Squared	error	is	a	popular	loss	
function:	sum	of	squared	costs	
over	the	training	set.	Dividing	
by	2	rather	than	m	will	make	
our	math	work	out	nicely	later



How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be





One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

61

Function	of	functions

	is	a	function	that	evaluates	how	good	other	
functions	or	regressors	are,	e.g.,	 .	Every	
choice	of	 	gives	a	different	regressor.	So	 	
evaluates	how	good	a	regressor	is.	

J
wTx

w J
J(f) =

1
2

m

∑
i=1

(yi − f(xi))2



How	do	we	decide	whether	weight	vector	is	good?

How	do	we	know	which	weight	vector	is	best	one	for	a	training	set?


For	an	input	 	in	the	training	set,	the	cost	of	a	mistake	is	




Define	the	cost	(or	loss)	for	a	particular	weight	vector	 	to	be





One	strategy	for	learning:		Find	the	 	with	least	cost	on	this	data

(xi, yi)
|yi − wTxi |

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

w

62



This	is	called	Least	Mean	Squares	(LMS)	Regression

																				 	=	 


Different	strategies	exist	for	learning	by	optimization

• Gradient	descent:	is	a	popular	algorithm

• Matrix	inversion:	for	this	particular	minimization	objective,	
there	is	also	an	analytical	solution;	no	need	for	gradient	
descent:	 


min
w

J(w) min
w

1
2

m

∑
i=1

(yi − wTxi)2

b = (XT X)−1XTY

63

Goal	of	learning:		minimize	mean	squared	error

‣ This	is	just	the	training	objective:	you	can	use	different	learning	
algorithms	to	minimize	this	objective	


‣ Properties	of	 :	differentiable,	convex,	and	lower	values	
mean	better	weight	vector	 ,	i.e.,	regressor.


‣ Mathematical	optimization:	focuses	on	solving	problems	of	the	
form	 .	So	many	algorithms	exist	to	solve	problem

J(w)
w

min
w

J(w)



This	is	called	Least	Mean	Squares	(LMS)	Regression

																				 	=	 


Different	strategies	exist	for	learning	by	optimization

• Gradient	descent:	is	a	popular	algorithm

• Matrix	inversion:	for	this	particular	minimization	objective,	
there	is	also	an	analytical	solution;	no	need	for	gradient	
descent:	 


min
w

J(w) min
w

1
2

m

∑
i=1

(yi − wTxi)2

b = (XT X)−1XTY

64

Goal	of	learning:		minimize	mean	squared	error

Different	strategies	exist	for	learning	by	optimization

‣ Gradient	descent:	is	a	popular	algorithm

‣ Matrix	inversion:	for	this	particular	minimization	
objective,	there	is	also	an	analytical	solution;	no	need	for	
gradient	descent:	b = (XT X)−1XTY



GRADIENT	DESCENT
Linear	Regression



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

66

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Why	is	 	a	convex	function?

Why	is	it	nice	to	minimize	a	convex	function?


J



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1
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 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Why	is	 	a	convex	function?

Why	is	it	nice	to	minimize	a	convex	function?

Gradient	descent	methods	guaranteed	to	find	minimum

J



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1
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 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	gradient	of	a	function?



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

69

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	gradient	of	a	function?

In	2-dimensions:	slope	of	a	line	

In	higher	dimensions:	direction	of	the	steepest	ascent,	that	
is,	direction	in	which	function	grows	the	fastest


Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

70

 J(w)

w
w4 w3 w2 w1

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

Pick	point	 

Gradient	points	in	
direction	function	
grows

w1



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

71

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1Gradient	descent:	initialize	your	
starting	point	for	search	for	
minimum	anywhere



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

72

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

Then	at	every	point,	compute	the	gradient	(the	arrow),	and	take	
a	step	in	direction	away	from	gradient	(i.e.,	move	to	a	point	
where	value	of	function	is	lower)



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

73

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

Keep	repeating	…



Gradient	descent
General	strategy	for	minimizing	a	
function	 


1. Start	with	an	initial	guess	for	
,	say	 


2. Iterate	until	convergence:

– Compute	the	gradient	of	 	at	 


– Update	 	to	get	 	by	taking	
a	step	in	the	opposite	direction	
of	the	gradient

J(w)

w w0

J wt

wt wt+1

74

Intuition:	The	gradient	is	the	direction	of	
steepest	increase	in	the	function.	To	get	to	
the	minimum,	go	in	the	opposite	direction

 J(w)

w

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

w4 w3 w2 w1

And	eventually	you	will	get	to	minimum



Gradient	descent	for	LMS

1. Initialize	 


2. For	 

– Compute	gradient	of	 	at	 .	Call	it	 


– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(a	small	constant)

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

Initialize	to	zeroes	or	random	

(convex	function,	so	doesn’t	matter	where	initialized)

Grad	 	or	Nabla	J J

Use	“-“	since	step	is	in	opposite	direction	



	

Gradient	descent	for	LMS

1. Initialize	 


2. For	 

– Compute	gradient	of	 	at	 .	Call	it	 


– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(a	small	constant)

w0

t = 0,1,2,…
J(w) wt ∇J(wt)

w
wt+1 = wt − r∇J(wt)

r

76

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

What	is	the	gradient	of	 ?J



Gradient	of	the	cost	 	at	point	J w
Remember	that	 	is	a	vector	with	 	elements	





To	find	the	best	direction	in	the	weight	space	 	we	compute	the	
gradient	of	 	with	respect	to	each	of	the	components	of


	 


This	vector	specifies	the	direction	that	produces	the	steepest	
increase	in	 .	We	want	to	modify	 		in	the	direction	of	 ,	
where	(with	a	fixed	step	size	 ):

	 	

w d
w = [w1, w2, w3, …, wj, …, wd]

w
J

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

J w −∇J(w)
r

wt+1 = wt − r∇J(wt)

77

	is	a	function	that	maps	 	to	
real	number	(the	total	cost)
J w



Remember	that	 	is	a	vector	with	 	elements	





To	find	the	best	direction	in	the	weight	space	 	we	compute	the	
gradient	of	 	with	respect	to	each	of	the	components	of


	 


This	vector	specifies	the	direction	that	produces	the	steepest	
increase	in	 .	We	want	to	modify	 		in	the	direction	of	 ,	
where	(with	a	fixed	step	size	 ):

	 	

w d
w = [w1, w2, w3, …, wj, …, wd]

w
J

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

J w −∇J(w)
r

wt+1 = wt − r∇J(wt)
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Gradient	of	the	cost	 	at	point	J w

Gradient	will	be	vector	with	
	elements	since	 	is	a	

vector	with	 	elements
d w

d

Need	to	compute	every	
element	to	define	gradient

Each	element	is	a	
partial	derivative



The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wT xi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2Gradient	of	the	cost	 	at	point	J w

Let’s	compute	 th	element	in	vectorj



The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wT xi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2Gradient	of	the	cost	 	at	point	J w

Gradient	of	sum	is	just	the	sum	of	gradients



Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Expanded	dot	product
Apply	chain	rule	for	derivative



Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wT xi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Expanded	dot	product
Apply	chain	rule	for	derivatives

Only	one	element	
depends	on	j



Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wT xi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Only	one	element	
depends	on	j



Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wTxi)xij
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We	are	trying	to	minimize

J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

Move	2	and	minus	outside,	2s	cancel



																																																		


Gradient	of	the	cost	 	at	point	J w
The	gradient	is	of	the	form		 





			 


		 








∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]

∂J
∂wj

=
∂

∂wj

1
2

m

∑
i=1

(yi − wTxi)2

=
1
2

m

∑
i=1

∂
∂wj

(yi − wTxi)2

=
1
2

m

∑
i=1

2(yi − wTxi)
∂

∂wj
(yi − w1xi1 − ⋯wjxij − ⋯)

=
1
2

m

∑
i=1

2(yi − wTxi)(−xij)

= −
m

∑
i=1

(yi − wTxi)xij
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	of	the	
gradient	vector

Sum	of Error					x					Input

Negative	of	this	gradient	is	how	much	to	
change	 th	weightj

Features	( )	with	larger	errors	will	cause	larger	changexij



Gradient	descent	for	LMS

1. Initialize	 


2. For	 	until	error	is	below	a	threshold

– Compute	gradient	of	 	at	 .	Call	it	 


Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector





– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(for	now	a	small	constant)


w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

∇J(wt) = [ ∂J
∂w1

,
∂J

∂w2
, ⋯,

∂J
∂wd ]



Gradient	descent	for	LMS

1. Initialize	 


2. For	 	until	error	is	below	a	threshold

– Compute	gradient	of	 	at	 .	Call	it	 


Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector





– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(for	now	a	small	constant)


w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

Take	step	in	opposite	direction	
of	gradient,	so	minus



Gradient	descent	for	LMS

1. Initialize	 


2. For	 	until	error	is	below	a	threshold

– Compute	gradient	of	 	at	 .	Call	it	 


Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector





– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(for	now	a	small	constant)


w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

Take	step	in	opposite	direction	
of	gradient,	so	minus



Gradient	descent	for	LMS

1. Initialize	 


2. For	 	until	error	is	below	a	threshold

– Compute	gradient	of	 	at	 .	Call	it	 


Evaluate	the	function	for	each	training	example	to	compute	the	error	and	construct	
the	gradient	vector





– Update	 	as	follows:


	 


where	 	is	the	learning	rate	(for	now	a	small	constant)


w0

t = 0,1,2,…
J(w) wt ∇J(wt)

∂J
∂wj

= −
m

∑
i=1

(yi − wT xi)xij

w
wt+1 = wt − r∇J(wt)

r
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J(w) =
1
2

m

∑
i=1

(yi − wTxi)2

We	are	trying	to	minimize

One	element	
of	∇J(wt)

After	computing	error	for	all	training	examples,	get	vector	that	
you	use	to	update	weights	all	at	once:	basically	a	batch


