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Today’s	Topics

Midterm

– Wednesday	March	30


Loss	minimization

– Overview

– How	to	minimize?


Evaluation

– Bias	vs.	variance

– Other	metrics	besides	accuracy



Masks	are	still	required	in	this	class	and	my	office	hours




LOSS	FUNCTIONS
Learning	as	Loss	Minimization



Learning	as	loss	minimization

The	setup

‣ Examples	 	with	labels	 	drawn	from	a	fixed,	unknown	distribution	 


‣ Hidden	oracle	classifier	 	labels	examples


‣ We	wish	to	find	a	hypothesis	 	that	mimics	 


The	ideal	situation

‣ Define	a	function	 	that	penalizes	bad	hypotheses


‣ Learning:	pick	a	function	 	to	minimize	expected	loss


x y P(X, Y )
f

h f

L
h ∈ H

min
h∈H ∑

(x,y)∈D

L( f(x), h(x))P(X = x, Y = y)

min
w ∑

(x,y)∈D

L(y, h(x))P(X = x, Y = y)

	is	set	of	all	possible	 	pairsD (x, y)
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Learning	as	loss	minimization

The	setup

‣ Examples	 	with	labels	 	drawn	from	a	fixed,	unknown	distribution	 


‣ Hidden	oracle	classifier	 	labels	examples


‣ We	wish	to	find	a	hypothesis	 	that	mimics	 


The	ideal	situation

‣ Define	a	function	 	that	penalizes	bad	hypotheses


‣ Learning:	pick	a	function	 	to	minimize	expected	loss


x y P(X, Y )
f

h f

L
h ∈ H

min
h∈H ∑

(x,y)∈D

L( f(x), h(x))P(X = x, Y = y)

	is	set	of	all	possible	 	pairsD (x, y)

We	cannot	minimize	this	since	we	
don’t	know	 !P(X, Y )



Empirical	loss	minimization

Learning	=	minimize	empirical	loss	on	the	training	set





where	 	is	#	of	training	examples	 


Is	there	a	problem	here?	Overfitting!


min
h∈H

1
m ∑

i=1:m

L(h(xi), f(xi))

m {(xiyi)}i=1,m
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Regularized	empirical	loss	minimization

We	need	something	that	biases	the	learner	towards	simpler	hypotheses

‣ Achieved	using	a	function	called	a	regularizer,	which	penalizes	
complex	hypotheses


Learning:





With	linear	classifiers:	





min
h∈H (regularizer(h) + C

1
m ∑

i=1:m

L(h(xi), f(xi)))

min
w

1
2

wTw + C
1
m ∑

i=1:m

L(yi, wTxi)

Squared	norm,	imposes	a	
preference	towards	larger	margins

Trade-off	parameter
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min
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wTw + C
1
m ∑
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L(yi, wTxi)

If	this	gets	too	large,	outweighs	gains	in	minimizing	loss.	
Helps	with	generalization:	don't	give	large	weight	to	

feature	unless	good	evidence	it	is	useful

Trade-off	parameter



Regularized	empirical	loss	minimization

We	need	something	that	biases	the	learner	towards	simpler	hypotheses

‣ Achieved	using	a	function	called	a	regularizer,	which	penalizes	
complex	hypotheses


Learning:





With	linear	classifiers:	





min
h∈H (regularizer(h) + C

1
m ∑

i=1:m

L(h(xi), f(xi)))

min
w

1
2

wTw + C
1
m ∑

i=1:m

L(yi, wTxi)

We’ll	talk	about	regularization	again	when	we	
talk	about	linear	regression



What	is	a	loss	function?

Loss	functions	should	penalize	mistakes

‣ We	are	minimizing	average	loss	over	the	training	data





What	is	the	ideal	loss	function	for	classification?	

‣ What	loss	function	would	you	minimize	if	computation	
were	free?

min
h∈H

1
m ∑

i=1:m

L(h(xi), f(xi))
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0-1	loss
Simplest	loss	function	counts	#	of	mistakes,	aka	0-1	loss:


‣ Penalizes	classification	mistakes	between	true	label	 	and	prediction	 





									


For	linear	classifiers	the	prediction	is	 


‣ Mistake	if	 





y y′￼

L0−1(y, y′￼) = {1 if	y ≠ y
0 if	y = y

y′￼= sgn(wTx)
ywTx ≤ 0

L0−1(y, y′￼) = {1 if	ywTx ≤ 0
0 otherwise
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‣ For	mistaken	prediction	
incur	a	penalty	of	1


‣ For	correct	prediction	
incur	no	penalty


L0−1(y, y′￼) = {1 if	ywTx ≤ 0
0 otherwise

0-1	loss
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‣ For	mistaken	prediction	
incur	a	penalty	of	1


‣ For	correct	prediction	
incur	no	penalty


L0−1(y, y′￼) = {1 if	ywTx ≤ 0
0 otherwise

0-1	loss

Discontinuous	function	
and	non-convex:	cannot	
be	minimized	easily




Problems	with	0-1	loss

‣ 0-1	loss	incurs	the	same	loss	value	of	1	for	all	wrong	predictions,	no	
matter	how	far	a	wrong	prediction	is	from	the	hyperplane


‣ Knowing	the	current	value	of	loss	function	doesn’t	indicate	how	to	
modify	current	weights	to	further	improve


‣ Computationally	intractable	to	minimize	0-1	loss	function:	with	 	
examples	need	to	check	 	permutations	(since	can’t	minimize	directly)


‣ What	can	we	do?	Make	some	assumptions:	minimize	“surrogate	
function”	that	is	good	enough


m
2m



A	solution	of	sorts

Minimize	a	new	function,	a	convex	upper	bound	of	classification	
error


Perceptron	loss	

‣ Penalizes	each	wrong	prediction	by	extent	of	violation

‣ The	perceptron	loss	function	is	defined	as	





where			 


‣ Note:	max	of	constant	and	linear	function	is	convex	function

1
m ∑

i=1:m

LP(yi, f(xi))

Lp(yi, f(xi)) = max(0, − yiwTxi)



A	convex	function	has	only	one	minimum

Convexity

Intuitively,	a	function	is	
convex	if	the	line	
segment	between	any	
two	points	on	the	
function	is	not	below	
the	function
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Perceptron	loss

Loss	is	0	when	 	is	
correctly	classified

x

Lp(yi, f(xi)) = max(0, − yiwTxi)

Loss	is	proportional	
to	extent	of	violation	
( 	)	when	 	is	
incorrectly	classified
−yiwTxi x



Square	loss

yf(x)f(x)

Square	loss	as	a	function	of	yf(x)Square	loss	as	a	function	of	f(x)

Minimized	when	
y = − 1

Minimized	when	
y = + 1

Both	minimized	
when	y = + 1

y ∈ {−1,1}

The	square	loss	function	is	commonly	used	for	regression	problems




Square	loss	can	also	be	used	for	binary	classification	problems

 

LS(y, f(x)) = (y − f(x))2

LS(y, f(x)) = (1 − yf(x))2

Square	loss	tends	to	penalize	
wrong	predictions	excessively




HOW	TO	MINIMIZE	A	LOSS	
FUNCTION?

Learning	as	Loss	Minimization



What	is	our	goal?

Most	machine	learning	algorithms	are	some	combination	of	
a	loss	function	+	an	algorithm	for	finding	a	local	minimum.	


Our	goal	is	to	minimize	the	loss	function


‣ E.g.,	find	a	set	of	values	for	 	for	which	the	loss	from	
the	loss	function	is	a	minimum	


w



What	is	our	goal?

Most	machine	learning	algorithms	are	some	combination	of	
a	loss	function	+	an	algorithm	for	finding	a	local	minimum.	


Our	goal	is	to	minimize	the	loss	function


‣ E.g.,	find	a	set	of	values	for	 	for	which	the	loss	from	
the	loss	function	is	a	minimum	


w

A	continuous	convex	loss	function	allows	a	simpler	
optimization	algorithm:	can	take	derivative	of	function




The	loss	surface	generally



The	loss	surface	generally

Think	of	water	running	downhill:	if	want	minima,	
could	get	stuck	in	local	minimum,	not	global



The	loss	surface	generally



How	do	we	navigate	loss	function?

Goal:	find	weights	for	which	loss	is	(global)	minimum


Remember,	the	derivative	of	a	function	is	zero	at	any	local	
maximum	or	minimum.	So	one	way	to	find	a	minimum	is	to	
set	 	and	solve	for	 .	But	for	most	functions,	there	
isn’t	a	way	to	solve	this


Instead	use	gradient	descent:	algorithmically	search	
different	values	of	 	until	you	find	one	that	results	in	a	
gradient	near	0.	More	on	this	next	class


f′￼(w) = 0 w

w
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BIAS	AND	VARIANCE
Evaluation
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Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	



vumanfredi@wesleyan.edu 38

Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	



vumanfredi@wesleyan.edu 39

Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	



vumanfredi@wesleyan.edu 40

Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	



vumanfredi@wesleyan.edu 41

Bias
Every	learning	algorithm	requires	assumptions	about	the	hypothesis	space.

Eg:	“My	hypothesis	space	is	

‣ ...linear”

‣ …decision	trees	with	5	nodes”

‣ …a	three	layer	neural	network	with	rectifier	hidden	units”


It's	possible	given	the	set	of	assumptions	made,	no	function	in	that	space	is	good	
enough.		What	is	error	of	the	best	classifier	within	your	hypothesis	set?	You	
cannot	do	better	than	that


Bias	is	the	true	error	(loss)	of	the	best	predictor	in	the	hypothesis	set	

Suppose	hypothesis	space	cannot	represent	a	function.	What	will	the	bias	be?	

‣ Bias	will	be	nonzero,	possibly	high	

Underfitting:	when	bias	is	high	



vumanfredi@wesleyan.edu 42

Variance
What	if	the	performance	of	a	classifier	is	dependent	on	specific	training	set	
we	have?


‣ Perhaps	the	model	will	change	if	we	slightly	change	the	training	set	 

Variance	describes	how	much	the	best	classifier	depends	on	the	training	set	

‣ Increases	when	classifiers	become	more	complex:	with	sufficient	
complexity	classifier	can	just	remember	training	set


‣ Decreases	with	larger	training	sets:		probability	of	overfitting	a	
massive	training	set	is	low


Overfitting:	high	variance	 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Why	care	about	bias	vs.	variance?

Can	be	helpful	to	understand	bias	vs.	variance	trade-offs	
to	reason	about	why	classifier	may	not	be	working	well



Let’s	play	darts

Low	bias
Hypothesis	can	represent	

target	function

Throw	darts	at	dartboard


Every	throw	is	a	different	classifier	that	is	trained	on	a	different	
training	set


Goal	is	to	hit	center	(target	function).

Target	function	
is	center



Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

How	much	does	classifier	depend	on	training	data?



Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


Classifier	can	actually	
find	the	true	function,	
changing	the	data	set	
does	not	impact	this


How	much	does	classifier	depend	on	training	data?



Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?

Your	hypothesis	space	
is	just	bad	when	bias	is	
high.	Different	data	
sets	can’t	help




Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?

Model	is	very	
dependent	on	data	as	
variance	increases,	so	

dots	spread	out




Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?

Maybe	by	chance	you	
hit	center,	but	where	
dart	lands	depends	
heavily	on	data	set




Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?



Let’s	play	darts

High	bias

Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

Each	dot	is	a	model	
that	is	learned	from	a	
a	different	dataset

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models


How	much	does	classifier	depend	on	training	data?

Note: underfitting is not necessarily the opposite 
of overfitting. 


High bias and high variance: both underfitting 
and overfitting at same time: bad hypothesis 
space and overfitting to data


But often conceptually a trade-off between bias 
and variance
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Trade-off	between	bias	vs.	variance
Error	=	bias	+	variance	(+	noise)


High	bias	

‣ Both	training	and	test	error	can	be	high

‣ Arises	when	the	classifier	cannot	represent	(underfits)	the	data 

High	variance	

‣ Training	error	can	be	low,	but	the	test	error	will	be	high

‣ Arises	when	the	learner	overfits	the	training	set	(essentially	

remembering	the	training	set




vumanfredi@wesleyan.edu 55

Impact	of	amount	of	data
Small	datasets	


‣ Variance	is	a	concern	

‣ Even	small	changes	in	training	set	may	change	optimal	
parameters	significantly


‣ Low	variance	is	more	important	than	bias	considerations


Large	datasets


‣ Variance	is	not	really	a	concern

‣ Having	lots	of	data	means	sufficient	points	to	represent	data	
distribution	accurately


‣ Low	bias	is	more	important	than	variance	consideration



Managing	of	bias	and	variance
Ensemble	methods	reduce	variance


• Multiple	classifiers	are	combined,	and	averages	tend	to	be	more	
robust


• E.g.,	bagging,	boosting


Decision	trees	of	a	given	depth

• Reducing	depth	increases	bias	because	makes	function	space	smaller

• Increasing	depth	decreases	bias	(because	can	represent	more	
things),	increases	variance	(because	can	represent	or	overfit	more	
things)


Neural	networks	(aka	multi-layer	perceptron)

• Deeper	models	(more	layers)	decrease	bias	but	can	increase	variance
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OTHER	METRICS
Evaluation
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual

Accuracy:	proportion	of	examples	where	
we	predicted	correct	label

Error:	proportion	of	examples	where	we	
predicted	incorrect	label

accuracy =
#	of	correct	predictions

#	of	examples

Pr
ed

ic
tio

n

La
be

l

accuracy =
#	of	incorrect	predictions

#	of	examples

error = 1−accuracy
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual

Accuracy:	proportion	of	examples	where	
we	predicted	correct	label

Error:	proportion	of	examples	where	we	
predicted	incorrect	label

accuracy =
#	of	correct	predictions

#	of	examples

Pr
ed
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n
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be
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accuracy =
#	of	incorrect	predictions

#	of	examples

error = 1−accuracy
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Problem

Accuracy	or	error	may	not	always	be	the	right	way	to	
measure	performance	of	classifier	…


Suppose	#	of	examples	for	one	class	is	very	different	than	#	of	
examples	for	another	class


E.g.,	

‣ 99	examples	are	positive	

‣ 1	example	is	negative


Just	predicting	positive	for	every	example	gives	99%	accuracy!
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Problem

Accuracy	or	error	may	not	always	be	the	right	way	to	
measure	performance	of	classifier	…


Suppose	#	of	examples	for	one	class	is	very	different	than	#	of	
examples	for	another	class


E.g.,	

‣ 99	examples	are	positive	

‣ 1	example	is	negative


Just	predicting	positive	for	every	example	gives	99%	accuracy!
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Another	problem

Accuracy	or	error	may	not	always	be	the	right	way	to	
measure	performance	of	classifier	…


Suppose	there	are	differential	misclassification	costs	–	say,	
getting	a	positive	wrong	costs	more	than	getting	a	negative	
wrong


‣ Consider	a	medical	domain	in	which	a	false	positive	
results	in	an	extraneous	test	but	a	false	negative	
results	in	a	failure	to	treat	a	disease
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The	beginnings	of	a	solution

Let’s	separately	ask	what	is	the	performance	of	
classifier	on	positive	labels	and	what	is	performance	
on	negative	labels.	


Or	ask	what	is	the	performance	on	each	class	of	labels	
separately
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B


‣ 10	examples	truly	labeled	A

‣ 90	examples	truly	labeled	B

‣ Classifier	predicts	A	for	8	examples.	


What	fraction	of	class	A	examples	did	the	classifier	discover?

‣ 10	examples	are	truly	labeled	A

‣ 8	of	truly	labeled	A	examples	found	by	classifier


What	fraction	of	classifier’s	predictions	of	class	A	were	correct

‣ 10	examples	are	truly	labeled	A

‣ 80	examples	are	labeled	A	by	classifier

Recall	is	80%

Precision	is	10%
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B


‣ 10	examples	truly	labeled	A

‣ 90	examples	truly	labeled	B

‣ Classifier	predicts	A	for	8	examples.	


What	fraction	of	class	A	examples	did	the	classifier	discover?

‣ 10	examples	are	truly	labeled	A

‣ 8	of	truly	labeled	A	examples	found	by	classifier


What	fraction	of	classifier’s	predictions	of	class	A	were	correct

‣ 10	examples	are	truly	labeled	A

‣ 80	examples	are	labeled	A	by	classifier Precision	is	10%
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Example
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Example
Suppose	dataset	has	two	classes	of	labels,	A	and	B


‣ 10	examples	truly	labeled	A

‣ 90	examples	truly	labeled	B

‣ Classifier	predicts	A	for	8	examples.	


What	fraction	of	class	A	examples	did	the	classifier	discover?

‣ 10	examples	are	truly	labeled	A

‣ 8	of	truly	labeled	A	examples	found	by	classifier
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‣ 80	examples	are	labeled	A	by	classifier

Recall	is	80%

Precision	is	10%



69

Precision-Recall	analysis

Precision(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Incorrect	predictions(	label	)

Recall(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Missed	examples(	label	)

What	fraction	of	class	“label”	examples	did	the	classifier	discover?


What	fraction	of	classifier’s	predictions	of	class	“label”	were	correct
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Precision-Recall	analysis

Precision(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Incorrect	predictions(	label	)

Recall(	label	) =
	Correct	predictions(	label	)

	Correct	predictions(	label	) + 	Missed	examples(	label	)

By	default,	precision	and	recall	computed	for	the	positive	label,	as	that	is	
usually	the	case	of	interest	and	the	one	usually	with	fewer	example	(e.g.,	
diagnosing	diseases	in	patients,	identifying	spam	emails)

What	fraction	of	class	“label”	examples	did	the	classifier	discover?


What	fraction	of	classifier’s	predictions	of	class	“label”	were	correct
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Combining	into	one	number

Sometimes	easier	to	work	with	a	single	number	as	
performance	measure


F1	score	balances	precision	and	recall:	harmonic	mean	of	
precision	and	recall





Training	to	minimize	F1	is	difficult,	but	can	choose	hyper	
parameters	for	which	F1	is	maximized

f1 =
2pr

p + r
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Practical	advice

What	measure	to	use	depends	on	domain	and	how	
balanced	your	dataset	is


All	labels	matter	and	dataset	is	balanced:	

‣ Use	accuracy


Not	all	labels	matter	or	dataset	not	balanced:	

‣ Use	precision,	recall,	F1
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Problems

What	if	the	number	of	examples	for	one	class	is	
different	than	the	number	of	examples	for	another	
class?


What	if	you	have	more	than	2	classes?	How	do	you	
know	whether	all	classes	are	being	predicted	equally	
well?




Confusion	matrices
Help	us	understand	what	types	of	mistakes	are	made	by	a	
learned	model


Confusion	matrix

‣ Summarizes	performance	of	a	classification	model

‣ Shows	ways	in	which	your	model	is	confused	(types	of	
errors	made)	when	model	makes	predictions




Confusion	matrices

from	http://vision.jhu.edu/

Table	contains	counts	of	correct	and	incorrect	classifications

89	percent	of	
jump	activities	
correctly	classified	
as	jump

11	percent	of	
jump	activities	
incorrectly	
classified	as	skip



OVERVIEW
Midterm



What	you	should	know
1. General	supervised	learning


‣ Supervised	learning,	instance	spaces,	label	spaces,	hypothesis	spaces

‣ Classification	vs.	regression	vs.	multi-class	classification.	What	they	are	anyhow	they	are	
defined	by	the	label	space


‣ Understanding	why	we	need	to	restrict	hypothesis	space

‣ General	issues	in	supervised	learning:	hypothesis	spaces,	representation	(i.e.,	features),	
learning	algorithms


2. Decision	trees

‣ What	is	a	decision	tree?	What	can	they	represent?

‣ How	to	predict	with	a	decision	tree

‣ Expressivity,	counting	the	number	of	decision	trees

‣ Dealing	with	continuous	features

‣ Learning	algorithm:	The	ID3	algorithm,	entropy,	information	gain

‣ Overfitting	(applicable	not	just	to	decision	trees)	and	how	to	deal	with	it	when	training	
decision	tress


‣ Variants	of	the	entropy-based	information	gain	measure
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What	you	should	know
3. Linear	classifiers


‣ What	are	linear	classifiers?	Why	are	they	interesting?

‣ Linear	separability.	What	can	linear	classifiers	express?	What	can	they	not	express?	
Examples	of	functions	that	are	linearly	separable	and	not	linearly	separable


‣ What	is	the	role	of	the	bias?

‣ Feature	expansion	to	predict	a	broader	set	of	features


4. Perceptron

‣ The	original	algorithm

‣ Variants	of	the	Perceptron	algorithm

‣ Margin	of	a	classifier


5. Least	mean	squares	regression	(depending	on	what	we	get	through	on	Wed.)

‣ What	is	LMS	regression?

‣ The	idea	of	learning	via	minimizing	a	cost	function

‣ Gradient	and	stochastic	gradient	descent	for	LMS.	The	difference	between	them
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Midterm	format
In	class	on	Wednesday,	March	30


‣ Closed	books,	closed	notes

‣ Covers	material	in	lectures	1	to	14


Will	not	ask	questions	on	

‣ Probability	problems

‣ Geometric	interpretation	of	perceptron


5	questions

‣ Short	questions:	supervised	learning	generally,	bias,	variance,	metrics

‣ Short	questions:	about	decision	tree,	perceptron,	linear	classifiers

‣ Decision	tree	question

‣ Perceptron	question

‣ Something	requiring	a	bit	more	thought
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Problem	1

Why	must	we	make	assumptions	about	
hypothesis	space?


If	label	is	real-valued,	what	kind	of	learning	
problem	do	you	have?
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Problem	2

Suppose	you	train	a	perceptron	on	a	dataset	but	
the	training	accuracy	is	always	near	50%.	Assume	
you	tuned	the	perceptron	as	best	you	could.	
Provide	a	suggestion	for	something	that	could	
potentially	improve	the	training	accuracy,	and	
explain	why	this	might	help.	
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Problem	3

Describe	the	Perceptron	algorithm	and	explain	how	how	it	
works	on	a	specific	problem
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Problem	4

Build	a	decision	tree	that	expresses	a	particular	boolean	
function:	A	OR	B,	A	AND	NOT	B,	…


Explain	how	you	would	build	a	decision	tree	using	
continuous	valued	data


Explain	how	entropy	measures	the	purity	of	splits	in	the	
ID3	algorithm	and	why	that	is	useful
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