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Today’s	Topics

Homework	5

– Due	Friday,	March	11	by	5p


Perceptron

– Variants

– Tips	and	tricks


Evaluation	motivation

– Loss	functions:	motivation	and	usage	for	classification

– Bias	and	Variance

– Other	metrics



Homework	5	discussion




What	is	cross-validation?	Why	use	it




How	to	read	through	and	use	documentation?	




Midterm:	March	28	or	March	30?




VARIANTS
Perceptron



Perceptron	variants	we’ve	seen

1. Original	perceptron	algorithm

2. Standard	perceptron	algorithm

3. Voted	perceptron	algorithm

4. Standard	perceptron	algorithm	

5. Margin	perceptron	algorithm

6. (Multi-class	perceptron	algorithm)
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Homework	5



Original	perceptron	algorithm

Given	a	training	set	 	where	 ,	 


1. Initialize	 

2. For	each	training	example	 :


• Predict	 

• if	 :			


Update	 

3. Return	final	weight	vector


D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′￼= sgn(wT

t xi)
y′￼≠ yi

wt+1 ← wt + ryixi
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Mistake	can	be	
written	as	yiwTxi ≤ 0

Prediction	on	a	new	example	with	features	 :	x sgn(wTx)



Standard	perceptron	algorithm

Given	a	training	set	 	where	 ,	 


1. Initialize	 

2. For	epoch	in	 :


• 	Shuffle	the	data

• For	each	training	example	 :


if	 :			update	 

3. Return	 


D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

w
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Prediction	on	a	new	example	with	features	 :	x sgn(wTx)

In	homework,	 	is	
number	of	iterations

T



‣ Remember	every	weight	vector	in	your	sequence	of	updates

‣ At	final	prediction	time,	each	weight	vector	gets	to	vote	on	the	
label.	The	number	of	votes	it	gets	is	the	number	of	iterations	it	
survived	before	being	updated


‣ Comes	with	strong	theoretical	guarantees	about	generalization,	
impractical	because	of	storage	issues
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Voted	perceptron	algorithm

Return	sequence	of	(weights,	#	of	examples	survived)


Every	one	of	those	weight	vectors	votes	on	final	prediction,	
gets	as	many	votes	as	#	of	examples	survived


What’s	the	problem?		Too	many	things	to	remember.	What	if	
1	million	features	so	weight	vectors	of	1	million?	



Averaged	perceptron	algorithm
Given	a	training	set	 	where	 ,	 


1. Initialize	 	and	 

2. For	epoch	in	 :


• 	Shuffle	the	data

• For	each	training	example	 :


if	 :			update	 




3. Return	 


D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1 a = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

a → a + w
a
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Prediction	on	a	new	example	with	features	 :	x sgn(aTx)

Remember	every	weight	vector	
in	your	sequence	of	updates	


Average	vector


Weight	vector	that	survives	longer	should	dominate	the	average
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Margin	perceptron	algorithm:	motivation
What	is	the	best	separating	

hyperplane?
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Margin	perceptron	algorithm:	motivation
What	is	the	best	separating	

hyperplane?


How	far	away	are	the	points	closest	to	the	hyperplane?




15

Margin	perceptron	algorithm:	motivation
What	is	the	best	separating	

hyperplane?
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Margin	perceptron	algorithm:	motivation

These	decision	boundaries	are	very	
close	to	some	items	in	the	training	
data


They	have	small	margins


Minor	changes	in	the	data	could	lead	
to	different	decision	boundaries



17

Margin	perceptron	algorithm:	motivation

These	decision	boundaries	are	very	
close	to	some	items	in	the	training	
data


They	have	small	margins


Minor	changes	in	the	data	could	lead	
to	different	decision	boundaries

This	decision	boundary	is	as	far	away	
from	any	training	items	as	possible	


It	has	a	large	margin


Minor	changes	in	the	data	result	in	
(roughly)	the	same	decision	boundary
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Margin	perceptron	algorithm:	motivation

Margin	=	the	distance	of	the	decision	boundary	to	the	
closest	items	in	the	training	data


We	want	to	find	a	classifier	whose	decision	boundary	is	
furthest	away	from	the	nearest	data	points.	(This	classifier	
has	the	largest	margin)


This	additional	requirement	(bias)	reduces	the	variance	
(i.e.	reduces	overfitting).	We’ll	define	bias	and	variance	
later	in	the	slides 



Perceptron	makes	updates	only	when	the	prediction	is	
incorrect	


 

What	if	the	prediction	is	close	to	being	incorrect?	Pick	a	
small	positive	 	and	update	when	


 

Can	generalize	better,	but	need	to	choose	  

yiwTxi ≤ 0

η

yiwTxi ≤ η

η
19

Margin	perceptron	algorithm
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Multi-class	perceptron

Given	a	training	set	 	where	
,	 


One	approach:	reduce	multi-class	problem	
to	binary	problems


Ideally:	only	correct	label	has	positive	score

D = {(xi, yi)}
xi ∈ ℜd+1 yi ∈ {1,2,3,…, k}



TIPS	AND	TRICKS
Perceptron



How	to	improve	likelihood	of	convergence	
Useful	for	Perceptron	algorithm	but	also	stochastic	gradient	descent


‣ Cross-validation	to	determine	how	best	to	set	hyper-parameters	
like	number	of	epochs	or	learning	rate


‣ Randomize	order	of	examples	seen	per	epoch

‣ Check	for	weights	converging

‣ Check	for	number	of	errors	converging

‣ Check	for	accuracy	converging

‣ Decrease	learning	rate	over	time

‣ Normalize	values	of	features	and	labels:	very	different	ranges	for	
feature	values	can	make	learning	more	difficult
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MOTIVATION	FOR	LOSS	FUNCTIONS
Evaluation



A	general	framework	for	learning

Goal:	predict	an	unobserved	output	value	 	based	on	
an	observed	input	vector	 


How?	Estimate	a	functional	relationship	 		from	



‣ Classification:	 	(or	 ),	


‣ Regression:	 


Perceptron	function:		

y ∈ Y
x ∈ X

y ∼ f(x)
D = {(xi, yi)}

y ∈ {0,1} y ∈ {1,2,…, k}
y ∈ ℜ

f(x) = wTx



A	general	framework	for	learning

Goal:	predict	an	unobserved	output	value	 	based	on	
an	observed	input	vector	 


How?	Estimate	a	functional	relationship	 		from	



‣ Classification:	 	(or	 ),	


‣ Regression:	 


Perceptron	function:		

y ∈ Y
x ∈ X

y ∼ f(x)
D = {(xi, yi)}

y ∈ {0,1} y ∈ {1,2,…, k}
y ∈ ℜ

f(x) = wTxQuestion:	what	is	this	function	 	for	perceptron?f(x)



A	general	framework	for	learning

Goal:	predict	an	unobserved	output	value	 	based	on	
an	observed	input	vector	 


How?	Estimate	a	functional	relationship	 		from	



‣ Classification:	 	(or	 ),	


‣ Regression:	 


Perceptron	function:		

y ∈ Y
x ∈ X

y ∼ f(x)
D = {(xi, yi)}

y ∈ {0,1} y ∈ {1,2,…, k}
y ∈ ℜ

f(x) = wTx



Which	model	should	we	pick?

We	need	a	metric	(aka	an	objective	function)	

We	would	like	to	minimize	the	probability	of	misclassifying	
unseen	examples,	but	we	can’t	measure	that	probability.	


Instead:	minimize	the	number	of	misclassified		training	examples
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Which	model	should	we	pick?

We	need	a	metric	(aka	an	objective	function)	
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Remember,	this	probability	is	with	respect	to	the	true	data	
(or	instance	space)	distribution	which	we	don’t	know



Which	model	should	we	pick?

We	need	a	metric	(aka	an	objective	function)	

We	would	like	to	minimize	the	probability	of	misclassifying	
unseen	examples,	but	we	can’t	measure	that	probability.	
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What	could	we	minimize	instead?																																																										



Which	model	should	we	pick?

We	need	a	metric	(aka	an	objective	function)	

We	would	like	to	minimize	the	probability	of	misclassifying	
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But	what	if	many	models	minimize	misclassified?

Problem:	there	may	still	be	many	models	that	are	consistent	with	
the	training	data	(i.e.,	minimize	number	of	misclassified	examples)	


We	therefore	need	a	more	specific	metric


Loss	functions	provide	such	metrics
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But	what	if	many	models	minimize	misclassified?

Problem:	there	may	still	be	many	models	that	are	consistent	with	
the	training	data	(i.e.,	minimize	number	of	misclassified	examples)	


We	therefore	need	a	more	specific	metric


Loss	functions	provide	such	metrics
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LOSS	FUNCTIONS	FOR	
CLASSIFICATION

Evaluation



Original	perceptron	algorithm

Given	a	training	set	 	where	 ,	 


1. Initialize	 

2. For	each	training	example	 :


• Predict	 

• if	 :			


Update	 

3. Return	final	weight	vector


D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′￼= sgn(wT

t xi)
y′￼≠ yi

wt+1 ← wt + ryixi

34

Mistake	can	be	
written	as	yiwTxi ≤ 0

Prediction	on	a	new	example	with	features	 :	x sgn(wTx)



:	Correct	classification	yf(x) > 0

An	example	 	is	correctly	classified	by	 	if	and	only	if	 :	

‣ Case	1	 :																		 

‣ Case	2	 :																		 

‣ Case	3	 :					 	

‣ Case	4	 :					

(x, y) f(x) yf(x) > 0
(y = + 1 = y′￼) f(x) > 0 ⇒ yf(x) > 0
(y = − 1 = y′￼) f(x) < 0 ⇒ yf(x) > 0
(y = + 1 ≠ y′￼= − 1) f(x) > 0 ⇒ yf(x) < 0
(y = − 1 ≠ y′￼= + 1) f(x) < 0 ⇒ yf(x) < 0
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:	Correct	classification	yf(x) > 0

An	example	 	is	correctly	classified	by	 	if	and	only	if	 :	

‣ Case	1	 :																		 

‣ Case	2	 :																		 

‣ Case	3	 :					 	

‣ Case	4	 :					

(x, y) f(x) yf(x) > 0
(y = + 1 = y′￼) f(x) > 0 ⇒ yf(x) > 0
(y = − 1 = y′￼) f(x) < 0 ⇒ yf(x) > 0
(y = + 1 ≠ y′￼= − 1) f(x) > 0 ⇒ yf(x) < 0
(y = − 1 ≠ y′￼= + 1) f(x) < 0 ⇒ yf(x) < 0
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:	Correct	classification	yf(x) > 0

An	example	 	is	correctly	classified	by	 	if	and	only	if	 :	

‣ Case	1	 :																		 

‣ Case	2	 :																		 

‣ Case	3	 :					 	

‣ Case	4	 :					

(x, y) f(x) yf(x) > 0
(y = + 1 = y′￼) f(x) > 0 ⇒ yf(x) > 0
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Loss	function	plots	will	be	a	function	of	yf(x)



Loss	functions	for	classification

Loss	functions,	 ,	evaluate	the	performance	of	a	given	
classifier


Loss	=	what	penalty	do	we	incur	if	we	misclassify	 ?


	is	the	loss	of	classifier	 	on	example	 	when	the	true	label	
of	 	is	 


‣ We	assign	label	 	to	  

Plots	of	 :	x-axis	is	typically	 	


L(y, f(x))

x

L(y, f(x)) f x
x y

y′￼= sgn( f(x)) x

L(y, f(x)) yf(x)
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Loss	functions	for	classification

Loss	functions,	 ,	evaluate	the	performance	of	a	given	
classifier


Loss	=	what	penalty	do	we	incur	if	we	misclassify	 ?


	is	the	loss	of	classifier	 	on	example	 	when	the	true	label	
of	 	is	 


‣ We	assign	label	 	to	  

Plots	of	 :	x-axis	is	typically	 	


L(y, f(x))

x

L(y, f(x)) f x
x y

y′￼= sgn( f(x)) x

L(y, f(x)) yf(x)



Many	different	possible	loss	functions

Misclassification	error	(0-1	loss)

																			 ;			 	otherwise


Squared	loss

																			 


Input	dependent	loss

																				 ;			 	otherwise


L(y, f(x)) = 0	if	f(x) = y 1

L(y, f(x)) = ( f(x) − y)2

L( f(x), y) = 0	if	f(x) = y c(x)



Misclassification	error:	0-1	Loss

	 


		 


			 			(correctly	classified)


					 		(misclassified)	

L(y, f(x)) = 0 ⟺ y = y′￼

= 1 ⟺ y ≠ y′￼

L(yf(x)) = 0 ⟺ yf(x) > 0

= 1 ⟺ yf(x) < 0

yf(x)

correctly	classifiedmisclassified

;			 	otherwiseL(y, f(x)) = 0	if	f(x) = y 1

y ∈ {−1,1}

L(y, f(x)) =
1
2

(1 − sgn(yf(x)))



Square	loss	(y − f(x))2




 
Note:	 


(the	loss	when	 	[red]	is	the	mirror	of	the	loss	when	 [blue])	


L(y, f(x)) = (y − f(x))2

L(−1, f(x)) = (−1 − f(x))2 = (1 + f(x))2 = L(1, − f(x))
y = − 1 y = + 1

yf(x)f(x)

Square	loss	as	a	function	of	yf(x)Square	loss	as	a	function	of	f(x)

Minimized	when	
y = − 1

Minimized	when	
y = + 1

Both	minimized	
when	y = + 1

y ∈ {−1,1}



What	is	our	goal?

Our	goal	is	to	minimize	the	loss	function,	that	is,	find	a	set	of	
parameter	values	for	which	the	loss	we	get	from	the	loss	
function	is	a	minimum	


Minimizing	0-1	loss	function	is	typically	NP-hard	


To	alleviate	this	computational	problem,	minimize	a	new	
function		-	a	convex	upper	bound	of	the	classification	error


A	continuous	convex	loss	function	allows	a	
simpler	optimization	algorithm



The	square	loss	is	a	convex	upper	bound	on	0-1	Loss	

yf(x)

Loss	as	a	function	of	yf(x)



The	loss	surface	

Linear	classification


‣ Hypothesis	space	is	parameterized	by	 	


‣ Plain	English:	each	 	yields	a	different	classifier	


Error/Loss/Risk	are	all	functions	of	 	


w
w

w



The	loss	surface	



The	loss	surface	



The	loss	surface	



The	risk	of	a	classifier	R( f )

The	risk	(aka	generalization	error)	of	a	classifier	
is	its	expected	loss:	(=	loss,	averaged	over	all	possible	data	
sets):	





Ideal	learning	objective:	Find	an	 	that	minimizes	risk

f(x) = wTx

R( f ) = ∫ L(y, f(x))P(x, y)dx, y

f



The	i.i.d.	assumption	

We	always	assume	that	training	and	test	items	are	
independently	and	identically	distributed	(i.i.d.):	


There	is	a	distribution	 		from	which	the	data	
	is	generated.	Usually	 	is	unknown	to	us	

(we	just	know	it	exists)	 

Training	and	test	data	are	samples	drawn	from	the	same	
:	they	are	identically	distributed	 

Each	 	is	drawn	independently	from		

P(X, Y )
D = {(x, y)} P(X, Y )

P(X, Y )

(x, y) P(X, Y )



The	empirical	risk	of	f(x)
The	empirical	risk	of	a	classifier	 	on	data	set	

	is	its	average	loss	on	the	items	in	 





Realistic	learning	objective:	find	an	 	that	minimizes	empirical	risk	


Note	that	the	learner	can	ignore	the	constant	 


f(x) = wTx
D = {(x1, y1), …, (xd, yd)} D

RD( f ) =
1
d

d

∑
i=1

L(yi, f(xi))

f

1
d



The	empirical	risk	of	f(x)
The	empirical	risk	of	a	classifier	 	on	data	set	

	is	its	average	loss	on	the	items	in	 





Realistic	learning	objective:	find	an	 	that	minimizes	empirical	risk	


Note	that	the	learner	can	ignore	the	constant	 


f(x) = wTx
D = {(x1, y1), …, (xd, yd)} D

RD( f ) =
1
d

d

∑
i=1

L(yi, f(xi))

f

1
d



Empirical	risk	minimization	

Learning: 

Given	training	data	 ,	return	the	
classifier	 		that	minimizes	the	empirical	risk	

D = {(x1, y1), …, (xd, yd)}
f(x) RD( f )



BIAS	AND	VARIANCE
Evaluation



57

Size	of	tree

Accuracy

On	test	data

On	training	data

Overfitting

A	decision	tree	overfits	the	training	data	when	its	accuracy	on	
the	training	data	goes	up	but	its	accuracy	on	unseen	data	
goes	down
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Reasons	for	overfitting

Too	much	variance	in	the	training	data

– Training	data	is	not	a	representative	sample	of	instance	space

– We	split	tree	on	features	that	are	actually	irrelevant 

Too	much	noise	in	the	training	data

– Noise	=	some	feature	values	or	class	labels	are	incorrect

– We	learn	to	predict	the	noise
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Overfitting

Model	complexity	(informally):

How	many	parameters	do	we	have	to	learn?

Decision	trees:	complexity	=	#	of	nodes

Perceptron:	number	of	weights

Model	complexity

Empirical	 
Error
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Model	complexity

Empirical	 
Error

Overfitting

Empirical	error	(=	on	a	given	data	set):

The	percentage	of	items	in	this	data	set	that	are	
misclassified	by	the	classifier	f



The	i.i.d.	assumption	

We	always	assume	that	training	and	test	items	are	
independently	and	identically	distributed	(i.i.d.):	


There	is	a	distribution	 		from	which	the	data	
	is	generated.	Usually	 	is	unknown	to	us	

(we	just	know	it	exists)	 

Training	and	test	data	are	samples	drawn	from	the	same	
:	they	are	identically	distributed	 

Each	 	is	drawn	independently	from		

P(X, Y )
D = {(x, y)} P(X, Y )

P(X, Y )

(x, y) P(X, Y )



62

Model	complexity

True	or	
expected 
error

Overfitting

True	or	expected	error:

What	percentage	of	items	drawn	from	 	do	we	expect	
to	be	misclassified	by	 ?	

(That’s	what	we	really	care	about	–	generalization)

P(X, Y )
f
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Variance	of	a	learner	(informally)

Variance	measures	how	susceptible	the	learner	is	to	minor	
changes	in	the	training	data


– i.e.,	to	different	samples	from	 


Variance	increases	with	model	complexity	

P(X, Y )
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Bias	of	a	learner	(informally)

How	likely	is	the	learner	to	identify	the	target	hypothesis?	

– Bias	is	low	when	the	model	is	expressive	(complex)

– Bias	is	high	when	the	model	is	(too)	simple
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Model	complexity

Expected 
Error

Impact	of	bias	and	variance

Risk	=	Expected	error	of	a	learner	≈	bias2	+	variance


(Computed	using	squared	error	loss)

Variance

Bias

(+	noise)



Empirical	risk	minimization

The	empirical	risk	of	a	classifier	 	on	data	set	
	is	its	average	loss	on	the	items	

in	 





Given	training	data	 ,	return	the	
classifier	 		that	minimizes	the	empirical	risk	

f(x) = wTx
D = {(x1, y1), …, (xd, yd)}

D

RD( f ) =
1
d

d

∑
i=1

L(yi, f(xi))

D = {(x1, y1), …, (xd, yd)}
f(x) RD( f )
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Model	complexity

Expected 
Error

Impact	of	bias	and	variance

Variance

Bias

Simple	models:	 
High	bias	and	low	variance

Complex	models:	 
High	variance	and	low	bias	
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Model	complexity

Expected 
Error

Impact	of	bias	and	variance

Variance

Bias

Simple	models:	 
High	bias	and	low	variance

Complex	models:	 
High	variance	and	low	bias	

Underfitting Overfitting



Let’s	play	darts
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Low	bias

Low	variance High	variance

Hypothesis	cannot	
represent	target	function

Hypothesis	can	represent	
target	function

How	much	does	classifier	depend	on	training	data?

Dartboard	=	hypothesis	space	

Bullseye	=	target	function	

Darts	=	learned	models
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Let’s	play	darts

High	bias
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represent	target	function
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Managing	of	bias	and	variance
Ensemble	methods	reduce	variance


• Multiple	classifiers	are	combined

• E.g.,	bagging,	boosting


Decision	trees	of	a	given	depth

• Increasing	depth	decreases	bias,	increases	variance


Neural	networks	(aka	multi-layer	perceptron)

• Deeper	models	(more	layers)	decrease	bias	but	can	increase	
variance

77



OTHER	METRICS
Evaluation
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual
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Evaluation	metrics

To	evaluate	model,	compare	predicted	labels	to	actual
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Problems

What	if	the	number	of	observations	for	one	class	is	
different	than	the	number	of	observations	for	another	
class?


What	if	you	have	more	than	2	classes?	How	do	you	know	
whether	all	classes	are	being	predicted	equally	well?


E.g.,	are	you	predicting	+1	labels	with	the	same	accuracy	
as	you	predict	-1	labels?




Confusion	matrices
Help	us	understand	what	types	of	mistakes	are	made	by	a	
learned	model


Confusion	matrix

‣ Summarizes	performance	of	a	classification	model

‣ Shows	ways	in	which	your	model	is	confused	(types	of	
errors	made)	when	model	makes	predictions




Confusion	matrices

from	http://vision.jhu.edu/

Table	contains	counts	of	correct	and	incorrect	classifications

89	percent	of	
jump	activities	
correctly	classified	
as	jump

11	percent	of	
jump	activities	
incorrectly	
classified	as	skip



Confusion	matrix	for	2-class	problems
Imagine a classifier that identifies presence of disease


True Positive

True Negative

False Positive

False Negative



Confusion	matrix	for	2-class	problems
Imagine a classifier that identifies presence of disease


How	do	we	compute	accuracy?

True Positive

True Negative

False Positive

False Negative



Confusion	matrix	for	2-class	problems
Imagine a classifier that identifies presence of disease


accuracy =
TP + TN

P + N

FN:	has	disease

FP:	does	not	have	
disease

True Positive

True Negative

False Positive

False Negative
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Is	accuracy	an	adequate	measure	of	performance?

Accuracy	may	not	be	useful	measure	in	cases	where	…


There	is	a	large	class	skew

‣ Is	98%	accuracy	good	if	97%	of	the	instances	are	negative?

‣ If	we	just	always	guessed	negative	that	would	give	us	97%	

accuracy!


There	are	differential	misclassification	costs	–	say,	getting	a	
positive	wrong	costs	more	than	getting	a	negative	wrong


‣ Consider	a	medical	domain	in	which	a	false	positive	results	
in	an	extraneous	test	but	a	false	negative	results	in	a	failure	
to	treat	a	disease



Confusion	matrix	for	2-class	problems
Given	a	dataset	of	P	positive	instance	and	N	negative	instances


accuracy =
TP + TN

P + N

Imagine	a	classifier	that	identifies	presence	of	disease	


sensitivity =
TP

TP + FN
(true	positive	rate)	=	probability	of	positive	
test	given	person	has	disease

How	good	is	model	at	
detecting	positive	cases?



Confusion	matrix	for	2-class	problems
Given	a	dataset	of	P	positive	instance	and	N	negative	instances


accuracy =
TP + TN

P + N

Imagine	a	classifier	that	identifies	presence	of	disease	


sensitivity =
TP

TP + FN
(true	positive	rate)	=	probability	of	positive	
test	given	person	has	disease

specificity =
TN

TN + FP
(true	negative	rate)	=	probability	of	negative	
test	given	person	does	not	have	disease

How	good	is	model	at	
detecting	positive	cases?

How	good	is	model	at	
detecting	negative	cases?



Confusion	matrix:	cancer	dataset



Confusion	matrix:	cancer	dataset

accuracy =
TP + TN

P + N

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP



Sensitivity	vs.	specificity

from	https://en.wikipedia.org/wiki/Sensitivity_and_specificity



Sensitivity	vs.	specificity

from	https://en.wikipedia.org/wiki/Sensitivity_and_specificity



Receiver	Operating	Characteristic	(ROC)	curve	
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Receiver	Operating	Characteristic	(ROC)	curve	
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False	positive	rate

from	https://en.wikipedia.org/wiki/Receiver_operating_characteristic


