
Lecture 11: Practical Use of Perceptron
and Variants

COMP 343, Spring 2022
Victoria Manfredi

Acknowledgements:		These	slides	are	based	primarily	on	content	from	the	
book	“Machine	Learning”	by	Tom	Mitchell	and	slides	created	by	Vivek	Srikumar	
(Utah),	Dan	Roth	(Penn),	Julia	Hockenmaier	(Illinois	Urbana-Champaign),	and	

Kai-Wei	Chang	(UCLA)

vumanfredi@wesleyan.edu

Today’s	Topics

Homework	5	
– Due	Friday,	March	11	by	5p	

Perceptron	 	
– Recap	
– Weight	update	
– Practical	use	and	variants

Homework	5	discussion	

Debugging	

Dataframes:	how	to	access	subset	of	columns?	(aka,	remove	the	label)	

Cross-validation	

Office	hours	Thursday?	

4

Installing	and	updating	python	libraries	using	pip

Vector	and	its	transpose

5

w =

w0
w1
w2
⋮
wd

x =

1
x1
x2
⋮
xd

wT = [w0, w1, w2, …, wd]Transpose	of	weight	vector:	

Dot	product:	 	wTx

[w0, w1, w2, …, wd] ×

1
x1
x2
⋮
xd

= w01 + w1x1 + w2x2 + …wdxd

Use	numpy	library:	
https://numpy.org/doc/stable/user/absolute_beginners.html	

6

How	to	represent	vectors	in	python?

https://numpy.org/doc/stable/user/absolute_beginners.html

Use	numpy	library:	
https://numpy.org/doc/stable/reference/generated/
numpy.dot.html	

7

How	to	implement	dot	product	in	python?

Conceptually,	need	to	transpose	to	change	
column	vector	to	row	vector	(though,	not	

clear	whether	library	cares	…)

https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html

RECAP
Perceptron

9

10

Inputs	are	 	dimensional	vectors,	denoted	by	 	
Output	is	a	label	 	

Linear	Threshold	Units	classify	an	example	 	using	parameters	 	(a	 	
dimensional	vector)	and	 	(a	real	number)	according	to	the	following	
classification	rule	

d x
y ∈ {−1,1}

x w d
b

11

Perceptron	is	a	linear	threshold	unit

x1

x2

x3

x4

1

w1

w2

w3

w4

b

Σ

Features	

Dot	product	
Threshold	

 y
 +

−

sgn b + wT x

Perceptron	=	Linear	Threshold	Unit

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + r(yixi)

12

Algorithm	first	chooses	an	initial	weight	
vector.	Here	all	weights	initialized	to	0	

-dimensional:	one	weight	per	feature	
plus	one	weight	for	bias

d + 1

w0 =

w0
w1
w2
⋮
wd

=

0
0
0
⋮
0

x1 =

1
x1
x2
⋮
xd

x2 =

1
x1
x2
⋮
xd

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

13

This	is	called	the	perceptron	update

This	update	has	to	produce	a	new	
set	of	weights	 	taking	error	into	

account.	How?
wt+1

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

14

	is	the	learning	rate,	a	hyperparameter,	
typically	a	number	between	0	and	1	

If	 	is	too	small:	slow	too	converge	

if	 	is	too	big:	may	not	converge

r

r
r

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

15

	is	either	-1	or	+1	so	 	is	
either	 	or	

yi yixi
−xi +xi

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

	used	here	to	combine	update	into	1	equation		yi

yi = + 1
yi = − 1

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

16

Stop	when	you	run	out	of	examples	
and	return	latest	weight	vector

The	perceptron	algorithm
Input:	A	sequence	of	training	examples	 	where	all	 ,	

	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	

• if	 :				
Update	 	

3. Return	final	weight	vector	

(x1, y1), (x2, y2), ⋯ xi ∈ ℜd

yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

17

Mistake	can	be	
written	as	yiwTxi ≤ 0

Original	way	of	writing	mistake	
	

	is	a	mistake	

Can	alternatively	write	
	

-1																				+1	
+1																				-1	

Mistake	can	thus	be	written	as			
	

y′ = sgn(wT
t xi)

y′ ≠ yi

sgn(wT
t xi) ≠ yi

yisgn(wT
t xi) ≤ 0

yiwT
t xi ≤ 0

The	perceptron	algorithm

18

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

THE	WEIGHT	UPDATE
Perceptron

Suppose	we	have	made	a	mistake	on	a	positive	example	
That	is,	 	and		 	

Call	the	new	weight	vector	
											(say)	

The	new	dot	product	is		
	

For	a	positive	example,	the	Perceptron	update	will	increase	
the	score	assigned	to	the	same	input	if	score	was	negative	

Similar	reasoning	for	negative	examples:	if	score	was	
positive	it	will	decrease	the	score

y = + 1 wT
t x ≤ 0

wt+1 = wt + x r = 1

wT
t+1 = (wt + x)Tx = wT

t x + xTx ≥ wT
t x

Intuition	behind	the	update

20

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Suppose	we	have	made	a	mistake	on	a	positive	example	
That	is,	 	and		 	

Call	the	new	weight	vector	
											(say)	

The	new	dot	product	is		
	

For	a	positive	example,	the	Perceptron	update	will	increase	
the	score	assigned	to	the	same	input	if	score	was	negative	

Similar	reasoning	for	negative	examples:	if	score	was	
positive	it	will	decrease	the	score

y = + 1 wT
t x ≤ 0

wt+1 = wt + x r = 1

wT
t+1 = (wt + x)Tx = wT

t x + xTx ≥ wT
t x

Intuition	behind	the	update

21

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Suppose	we	have	made	a	mistake	on	a	positive	example	
That	is,	 	and		 	

Call	the	new	weight	vector	
											(say)	

The	new	dot	product	is		
	

For	a	positive	example,	the	Perceptron	update	will	increase	
the	score	assigned	to	the	same	input	if	score	was	negative	

Similar	reasoning	for	negative	examples:	if	score	was	
positive	it	will	decrease	the	score

y = + 1 wT
t x ≤ 0

wt+1 = wt + x r = 1

wT
t+1 = (wt + x)Tx = wT

t x + xTx ≥ wT
t x

Intuition	behind	the	update

22

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

A	simple	example

23

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
0
0
0] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

A	simple	example

24

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
0
0
0] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx1 = 0 × 1 + 0 × (−2) + 0 × 2 = 0

A	simple	example

25

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
0
0
0] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx1 = 0 × 1 + 0 × (−2) + 0 × 2 = 0

w → w − x1

A	simple	example

26

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
0
0
0] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx1 = 0 × 1 + 0 × (−2) + 0 × 2 = 0

w → w − x1

w =
0 − (1)

0 − (−2)
0 − (2)

= [
−1

2
−2]

A	simple	example

27

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
0
0
0] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx1 = 0 × 1 + 0 × (−2) + 0 × 2 = 0

w → w − x1

w =
0 − (1)

0 − (−2)
0 − (2)

= [
−1

2
−2]

wTx1 = − 1 × 1 + 2 × (−2) + (−2) × 2 = − 9

A	simple	example

28

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

A	simple	example

29

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

A	simple	example

30

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

A	simple	example

31

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

w =
−1 + (1)

2 + (3)
−2 + (5)

=
0
5
3

A	simple	example

32

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

w =
−1 + (1)

2 + (3)
−2 + (5)

=
0
5
3

wTx2 = 0 × 1 + 5 × 3 + 3 × 5 = 30

A	simple	example

33

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

w =
−1 + (1)

2 + (3)
−2 + (5)

=
0
5
3

wTx2 = 0 × 1 + 5 × 3 + 3 × 5 = 30
wTx1 = 0 × 1 + 5 × (−2) + 3 × 2 = − 4

A	simple	example

34

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

w =
−1 + (1)

2 + (3)
−2 + (5)

=
0
5
3

wTx2 = 0 × 1 + 5 × 3 + 3 × 5 = 30
wTx1 = 0 × 1 + 5 × (−2) + 3 × 2 = − 4

wTx = 5x1 + 3x2 = 0

5(−3) + 3(5) = 0
5(3) + 3(−5) = 0

A	simple	example

35

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

w = [
−1

2
−2] x1 = [

1
−2

2] x2 = [
1
3
5]

 x1

(−2,2)

 x2
(3,5)

wTx2 = − 1 × 1 + 2 × 3 + (−2) × 5 = − 5

w → w + x2

w =
−1 + (1)

2 + (3)
−2 + (5)

=
0
5
3

wTx2 = 0 × 1 + 5 × 3 + 3 × 5 = 30
wTx1 = 0 × 1 + 5 × (−2) + 3 × 2 = − 4

wTx = 5x1 + 3x2 = 0

5(−3) + 3(5) = 0
5(3) + 3(−5) = 0

(−3,5)

(3, − 5)

Geometry	of	the	perceptron	update

36
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Weight	vector	is	normal	to	hyperplane,	
points	in	direction	of	positive	examples

Geometry	of	the	perceptron	update

37
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

An	example	 	is	also	a	
vector	and	here	has	
label	+1

x

Geometry	of	the	perceptron	update

38

Geometric	interpretation	of	dot	product	of	 	and	 	

 where magnitude of vector is

given by

If	angle	 	is	more	than	90	degrees,	dot	product	is	negative

w x

wTx = ∣ w ∣ ∣ x ∣ cosθ

∣ w ∣ = ∑
i

w2
i

θ

θ

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

39

Geometric	interpretation	of	dot	product	of	 	and	 	

 where magnitude of vector is

given by

If	angle	 	is	more	than	90	degrees,	dot	product	is	negative

w x

wTx = ∣ w ∣ ∣ x ∣ cosθ

∣ w ∣ = ∑
i

w2
i

θ

θ

So	what	is	happening	here?		What	kind	of	mistake?	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

40

Geometric	interpretation	of	dot	product	of	 	and	 	

 where magnitude of vector is

given by

If	angle	 	is	more	than	90	degrees,	dot	product	is	negative

w x

wTx = ∣ w ∣ ∣ x ∣ cosθ

∣ w ∣ = ∑
i

w2
i

θ

θ

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

41

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

How	do	we	update	weights	
when	mistake	on	positive	

example?	

Geometry	of	the	perceptron	update

42

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

43

Vector	addition:		
End	of	w	arrow	is	start	of	x	arrow

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

44

Vector	addition:		
Blue	dashed	line	is	sum,	 .	
This	sum	is	the	new	weight	vector

w + x

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

45

Weight	vector	is	
direction	that	is	
normal	to	hyperplane

Weight	vector	
has	rotated

Mistake	on	positive	example	
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

46
Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

47

An	example	 	is	also	a	
vector	and	here	has	
label	-1

x

Geometric	interpretation	of	dot	product	of	 	and	 	

 where magnitude of vector is

given by

If	angle	 	is	less	than	90	degrees,	dot	product	is	positive

w x

wTx = ∣ w ∣ ∣ x ∣ cosθ

∣ w ∣ = ∑
i

w2
i

θ

θ

Mistake	on	negative	example	So	what	is	happening	here?		What	kind	of	mistake?	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

48

An	example	 	is	also	a	
vector	and	here	has	
label	-1

x

Geometric	interpretation	of	dot	product	of	 	and	 	

 where magnitude of vector is

given by

If	angle	 	is	less	than	90	degrees,	dot	product	is	positive

w x

wTx = ∣ w ∣ ∣ x ∣ cosθ

∣ w ∣ = ∑
i

w2
i

θ

θ

Mistake	on	negative	example	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

49

Mistake	on	negative	example	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

50

Vector	addition:		
y	x	points	in	opposite	direction	
of	x	because	negative

Mistake	on	negative	example	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

51

Vector	addition:		
Blue	dashed	line	is	sum,	 .	
This	sum	is	the	new	weight	vector

w + x

Mistake	on	negative	example	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

Geometry	of	the	perceptron	update

52

Weight	vector	
has	rotated

Weight	vector	is	
direction	that	is	
normal	to	hyperplane

Mistake	on	negative	example	

Mistake	on	positive:	 	
Mistake	on	negative:	

wt+1 ← wt + rxi
wt+1 ← wt − rxi

53

Perceptron	Convergence

Perceptron	Convergence	Theorem:	If	there	exist	a	set	of	
weights	that	are	consistent	with	the	data	(i.e.,	the	data	is	
linearly	separable),	the	perceptron	learning	algorithm	will	
converge.	Further,	the	number	of	times	the	perceptron	
must	adjust	weights	before	convergence	is	upper	bounded	

Perceptron	Cycling	Theorem:	If	the	training	data	is	not	
linearly	separable	the	perceptron	learning	algorithm	will	
eventually	repeat	the	same	set	of	weights	and	therefore	
enter	an	infinite	loop

54

Perceptron	Convergence

Perceptron	Convergence	Theorem:	If	there	exist	a	set	of	
weights	that	are	consistent	with	the	data	(i.e.,	the	data	is	
linearly	separable),	the	perceptron	learning	algorithm	will	
converge.	Further,	the	number	of	times	the	perceptron	
must	adjust	weights	before	convergence	is	upper	bounded	

Perceptron	Cycling	Theorem:	If	the	training	data	is	not	
linearly	separable	the	perceptron	learning	algorithm	will	
eventually	repeat	the	same	set	of	weights	and	therefore	
enter	an	infinite	loop

PRACTICAL	USE	AND	VARIANTS
Perceptron

Practical	use
Randomize	order	of	examples	

▪ Avoid	presenting	examples	in	fixed	order:	re-permute	
examples	every	iteration	

▪ Improves	convergence	speed	

Number	of	iterations	to	convergence	
▪ Will	converge	if	possible	to	converge,	but	how	many	

iterations?		
▪ While	the	convergence	gives	a	bound,	you	will	not	get	an	

exact	number	
▪ Number	of	iterations	depends	on	how	much	distance	

between	hyperplane	and	nearest	point

56

Practical	use
Randomize	order	of	examples	

▪ Avoid	presenting	examples	in	fixed	order:	re-permute	
examples	every	iteration	

▪ Improves	convergence	speed	

Number	of	iterations	to	convergence	
▪ Will	converge	if	possible	to	converge,	but	how	many	

iterations?		
▪ While	the	convergence	theorem	gives	a	bound,	you	will	not	

get	an	exact	number	
▪ Number	of	iterations	depends	on	how	much	distance	

between	hyperplane	and	nearest	point

57

The	perceptron	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	
• if	 :				

Update	 	
3. Return	final	weight	vector	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

58

The	perceptron	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	each	training	example	 :	

• Predict	 	
• if	 :				

Update	 	
3. Return	final	weight	vector	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w0 = 0 ∈ ℜd+1

(xi, yi)
y′ = sgn(wT

t xi)
y′ ≠ yi

wt+1 ← wt + ryixi

59

Mistake	can	be	
written	as	yiwTxi ≤ 0

The	standard	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

w

60

Predicion	on	a	new	example	with	features	 :	x sgn(wTx)

The	standard	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

w

61

Predicion	on	a	new	example	with	features	 :	x sgn(wTx)

	is	a	hyper-
parameter

T
Mimic	infinite	stream	of	

examples	by	going	over	data	
again	and	again.	Each	pass	
over	data	is	called	an	epoch

The	standard	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

w

62

Predicion	on	a	new	example	with	features	 :	x sgn(wTx)

Every	epoch	go	through	examples	
in	different	random	order

The	standard	algorithm

Given	a	training	set	 	where	 ,	 	

1. Initialize	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

w

63

Predicion	on	a	new	example	with	features	 :	x sgn(wTx)

Recall	the	update	rule	
	

	is	called	the	learning	rate	or	step	size	

‣ When	you	update	 	to	be	more	positive	or	negative,	this	controls	
the	size	of	the	change	you	make	(or,	how	large	a	“step”	you	take)	

How	to	choose	the	step	size?	

‣ If	 	is	too	small,	the	algorithm	will	be	slow	because	the	updates	
won’t	make	much	progress	

‣ If	 	is	too	large,	the	algorithm	will	be	slow	because	the	updates	
will	“overshoot”	and	may	cause	previous	correct	classification	to	
become	incorrect

wt+1 ← wt + r(yixi)

r
wj

r

r

64

Learning	rate

Recall	the	update	rule	
	

	is	called	the	learning	rate	or	step	size	

‣ When	you	update	 	to	be	more	positive	or	negative,	this	controls	
the	size	of	the	change	you	make	(or,	how	large	a	“step”	you	take)	

How	to	choose	the	step	size?	

‣ If	 	is	too	small,	the	algorithm	will	be	slow	because	the	updates	
won’t	make	much	progress	

‣ If	 	is	too	large,	the	algorithm	will	be	slow	because	the	updates	
will	“overshoot”	and	may	cause	previous	correct	classification	to	
become	incorrect

wt+1 ← wt + r(yixi)

r
wj

r

r

65

Learning	rate

Perceptron	often	just	uses	 		
‣ When	we	see	gradient	descent,	setting	learning	rate	will	be	
more	important	

Why?	
‣ Learning	rate	in	case	of	perceptron	just	scales	the	weights	
and	hence	the	dot	product	 ,	but	we	only	care	about	
the	sign	

‣ Same	number	of	mistakes	will	be	made	regardless	of	
learning	rate,	and	we	know	that	some	number	of	mistakes	
must	be	made	

r = 1

wTx

66

Learning	rate

Perceptron	often	just	uses	 		
‣ When	we	see	gradient	descent,	setting	learning	rate	will	be	
more	important	

Why?	
‣ Learning	rate	in	case	of	perceptron	just	scales	the	weights	
and	hence	the	dot	product	 ,	but	we	only	care	about	
the	sign	

‣ Same	number	of	mistakes	will	be	made	regardless	of	
learning	rate,	and	we	know	that	some	number	of	mistakes	
must	be	made	

r = 1

wTx

67

Learning	rate

How	do	you	know	which	line	is	best?

68
 x2

 x1

- -----

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

 1 1

 1 0

Perceptron	will	find	a	set	of	weights	
that	separates	classes	if	linearly	
separable,	but	not	guaranteed	to	find	
the	weight	vector	that	separates	the	
classes	the	best	

How	do	you	know	which	line	is	best?

69
 x2

 x1

- -----

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

x1 + x2 ≥ 2 1 1

 1 0

How	do	you	know	which	line	is	best?

70
 x2

 x1

- -----

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

x1 + x2 ≥ 2 1 1

 1 0

How	do	you	know	which	line	is	best?

71
 x2

 x1

- -----

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

x1 + x2 ≥ 2 1 1

 1 0

Infinite	number	of	functions,	learning	
algorithm	has	to	return	just	one	

Some	of	these	lines	are	better	for	
generalization	if	there	is	noise	in	the	data

How	do	you	know	which	line	is	best?

72
 x2

 x1

- -----

-

- -

y = x1 ∨ x2
x1 + x2 ≥ 1

x1 + x2 ≥ 2 1 1

 1 0

Rather	than	just	return	the	
final	weight	vector,	let’s	try	
something	different	

Voted	perceptron	
‣ Remember	every	weight	vector	in	your	sequence	of	updates	
‣ At	final	prediction	time,	each	weight	vector	gets	to	vote	on	the	
label.	The	number	of	votes	it	gets	is	the	number	of	iterations	it	
survived	before	being	updated	

‣ Comes	with	strong	theoretical	guarantees	about	
generalization,	impractical	because	of	storage	issues	

Averaged	perceptron	
‣ Instead	of	using	all	weight	vectors,	use	the	average	weight	
vector	(i.e.,	longer	surviving	weight	vectors	get	more	say)	

‣ More	practical	alternative	and	widely	used

73

Perceptron	variants

Return	sequence	of	(weights,	#	of	examples	survived)	

Every	one	of	those	weight	vectors	votes	on	final	predicion,	
gets	as	many	votes	as	#	of	examples	survived	

What’s	the	problem?		too	many	things	to	remember.	What	if	
1	million	features	so	weight	vectors	of	1	million?	

Voted	perceptron	
‣ Remember	every	weight	vector	in	your	sequence	of	updates	
‣ At	final	prediction	time,	each	weight	vector	gets	to	vote	on	the	
label.	The	number	of	votes	it	gets	is	the	number	of	iterations	it	
survived	before	being	updated	

‣ Comes	with	strong	theoretical	guarantees	about	
generalization,	impractical	because	of	storage	issues	

Averaged	perceptron	
‣ Instead	of	using	all	weight	vectors,	use	the	average	weight	
vector	(i.e.,	longer	surviving	weight	vectors	get	more	say)	

‣ More	practical	alternative	and	widely	used

74

Perceptron	variants

Return	sequence	of	(weights,	#	of	examples	survived)	

Every	one	of	those	weight	vectors	votes	on	final	predicion,	
gets	as	many	votes	as	#	of	examples	survived	

What’s	the	problem?		Too	many	things	to	remember.	What	if	
1	million	features	so	weight	vectors	of	1	million?	

Voted	perceptron	
‣ Remember	every	weight	vector	in	your	sequence	of	updates	
‣ At	final	prediction	time,	each	weight	vector	gets	to	vote	on	the	
label.	The	number	of	votes	it	gets	is	the	number	of	iterations	it	
survived	before	being	updated	

‣ Comes	with	strong	theoretical	guarantees	about	
generalization,	impractical	because	of	storage	issues	

Averaged	perceptron	
‣ Instead	of	using	all	weight	vectors,	use	the	average	weight	
vector	(i.e.,	longer	surviving	weight	vectors	get	more	say)	

‣ More	practical	alternative	and	widely	used

75

Perceptron	variants

Voted	perceptron	
‣ Remember	every	weight	vector	in	your	sequence	of	updates	
‣ At	final	prediction	time,	each	weight	vector	gets	to	vote	on	the	
label.	The	number	of	votes	it	gets	is	the	number	of	iterations	it	
survived	before	being	updated	

‣ Comes	with	strong	theoretical	guarantees	about	
generalization,	impractical	because	of	storage	issues	

Averaged	perceptron	
‣ Instead	of	using	all	weight	vectors,	use	the	average	weight	
vector	(i.e.,	longer	surviving	weight	vectors	get	more	say)	

‣ More	practical	alternative	and	widely	used

76

Perceptron	variants

Weight	vector	that	survives	longer	should	dominate	the	average

Averaged	perceptron
Given	a	training	set	 	where	 ,	 	

1. Initialize	 	and	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
	

3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1 a = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

a → a + w
a

77

Predicion	on	a	new	example	with	features	 :	x sgn(aTx)

Remember	every	weight	vector	
in	your	sequence	of	updates		

Average	vector	

Averaged	perceptron
Given	a	training	set	 	where	 ,	 	

1. Initialize	 	and	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
	

3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1 a = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

a → a + w
a

78

Predicion	on	a	new	example	with	features	 :	x sgn(aTx)

Remember	every	weight	vector	
in	your	sequence	of	updates		

Average	vector	

Averaged	perceptron
Given	a	training	set	 	where	 ,	 	

1. Initialize	 	and	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
	

3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1 a = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

a → a + w
a

79

Predicion	on	a	new	example	with	features	 :	x sgn(aTx)
This	is	the	simplest	version	of	the	averaged	perceptron		

Extra	vector	addiEon	step:	there	are	easy	programming	tricks	to	
make	sure	that	 	is	also	updated	only	when	there	is	an	error	a

Averaged	perceptron
Given	a	training	set	 	where	 ,	 	

1. Initialize	 	and	 	
2. For	epoch	in	 :	

• 	Shuffle	the	data	
• For	each	training	example	 :	

if	 :			update	 	
	

3. Return	 	

D = {(xi, yi)} xi ∈ ℜd+1 yi ∈ {−1,1}

w = 0 ∈ ℜd+1 a = 0 ∈ ℜd+1

1…T

(xi, yi)
yiwTxi ≤ 0 wt+1 ← wt + ryixi

a → a + w
a

80

Predicion	on	a	new	example	with	features	 :	x sgn(aTx)If	you	want	to	use	the	Perceptron	algorithm,	use	averaging	

Perceptron	makes	updates	only	when	the	predicion	is	
incorrect		

	

What	if	the	predicion	is	close	to	being	incorrect?	Pick	a	
small	posiive	 	and	update	when		

	

Can	generalize	beler,	but	need	to	choose	 	

yiwTxi ≤ 0

η

yiwTxi ≤ η

η
81

Margin	perceptron

0											ηmistake	
If	the	current	 	gives	
labels	very	close	to	

hyperplane	that	is	bad	
even	if	correct	

w

Perceptron	makes	updates	only	when	the	predicion	is	
incorrect		

	

What	if	the	predicion	is	close	to	being	incorrect?	Pick	a	
small	posiive	 	and	update	when		

	

Can	generalize	beler,	but	need	to	choose	 	

yiwTxi ≤ 0

η

yiwTxi ≤ η

η
82

Margin	perceptron

0											ηmistake	
If	the	current	 	gives	
labels	very	close	to	

hyperplane	that	is	bad	
even	if	correct	

w

Perceptron	makes	updates	only	when	the	predicion	is	
incorrect		

	

What	if	the	predicion	is	close	to	being	incorrect?	Pick	a	
small	posiive	 	and	update	when		

	

Can	generalize	beler,	but	need	to	choose	 	

yiwTxi ≤ 0

η

yiwTxi ≤ η

η
83

Margin	perceptron

0											ηmistake	
If	the	current	 	gives	
labels	very	close	to	

hyperplane	that	is	bad	
even	if	correct	

w

84

Multi-class	perceptron

Given	a	training	set	 	where	
,	 	

One	approach:	reduce	muli-class	problem	
to	binary	problems	

3	min:	How	might	you	do	that?

D = {(xi, yi)}
xi ∈ ℜd+1 yi ∈ {1,2,3,…, k}

85

Multi-class	perceptron

Given	a	training	set	 	where	
,	 	

One	approach:	reduce	muli-class	problem	
to	binary	problems	

3	min:	How	might	you	do	that?

D = {(xi, yi)}
xi ∈ ℜd+1 yi ∈ {1,2,3,…, k}

86

Multi-class	perceptron

Given	a	training	set	 	where	
,	 	

One	approach:	reduce	muli-class	problem	
to	binary	problems	

Ideally:	only	correct	label	has	posiive	score

D = {(xi, yi)}
xi ∈ ℜd+1 yi ∈ {1,2,3,…, k}

