Lecture 11: Practical Use of Perceptron
and Variants

COMP 343, Spring 2022
Victoria Manfredi

WESLEYAN
'.i;ﬁ

Acknowledgements: These slides are based primarily on content from the
book “Machine Learning” by Tom Mitchell and slides created by Vivek Srikumar
(Utah), Dan Roth (Penn), Julia Hockenmaier (lllinois Urbana-Champaign), and
Kai-Wei Chang (UCLA)

Today’s Topics

Homework 5
— Due Friday, March 11 by 5p

Perceptron
— Recap
— Weight update

— Practical use and variants

Homework 5 discussion

Debugging

Dataframes: how to access subset of columns? (aka, remove the label)

Cross-validation

Office hours Thursday?

Installing and updating python libraries using pip

> pip3 install numpy==1.19.5
Requirement already satisfied: numpy==1.19.5 in /usr/local/lib/python3.9/site-packages (1.19.5)

vmanfredi@® ~ () $

A |

Vector and its transpose

o 1
Wi X1
w= |W X=| X
Wa Xd

Transpose of weight vector: w! = [wy, w;, wy, ..., w,]

T _ -

Dot product: w* X 1
X
(W, Wi, Wy, oo Wyl X | X2 | =wpl + wixp +wox, +.oowyxy

How to represent vectors in python?

Use numpy library:
https://numpy.org/doc/stable/user/absolute beginners.html

import numpy as np

X np.array([1, 2, 3])
w = np.array([4, 2, 1])

https://numpy.org/doc/stable/user/absolute_beginners.html

How to implement dot product in python?

Use numpy library:

https://numpy.org/doc/stable/reference/senerated/
numpy.dot.html

>

>>> 1mport numpy as np

>>> X = np.array([1l, 2, 3])
>>> W = np.array([4, 2, 1])
>>> Wt = w.transpose()

>>> np.dot(wt, x)
11

wt.dot(a)
11

Conceptually, need to transpose to change
column vector to row vector (though, not
clear whether library cares ...)

https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html

Perceptron
RECAP

REPORT NO. {5.),60-1

THE PERCEFTRON
A PERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)
January, 1957

Prepared by: &a.A Roan 4G4

Frank Rosenblatt,
Project Engineer

Psychological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN!

F. ROSENBLATT

Cornell Aeronautical Laboratory

The hype
NEW NAYY DEYIGE Hr\\'ING told you about the giant

- digital computer known as|l.B.M\
LEARNS BY DOING 704 Jand how it has been taught to play

' a fairly creditable game of chess, we’d
like to tell you about an even more
remarkable machine, the perceptron,
which, as its name implies, is capable
of what amounts to original thought.

WASHINGTON, July. 7 (UPI) The first perceptron has yet to be built,
—The Navy revealed the em- ’
bryo of an electronic computer

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

today that it expects will be The New Yorker, December 6, 1958 P. 44
able to walk, talk, see, write,

reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be

‘finished in about & year at a
cact af 2100 000

The New York Times, July 8 1958 The IBM 704 computer

Perceptron is a linear threshold unit

Inputs are d dimensional vectors, denoted by X

Outputis alabely € {—1,1}

Linear Threshold Units classify an example X using parameters w (a d
dimensional vector) and b (a real number) according to the following

classification rule
X1 Wi

\b‘_i_ WTx Sgn
X, 2
X3

W Threshold
4 Dot product
Xy

b

1
Features Perceptron = Linear Threshold Unit

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € RY,
yi S {_lal}

Algorithm first chooses an initial weight
vector. Here all weights initialized to 0

1. Initialize wy = 0 e R+l

d + 1-dimensional: one weight per feature
plus one weight for bias

1 1 Wo 0
X1 X1 Wi 0
X; = | *2 X, = | *2 wo= |"M2| =10

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € R,
y, € {—1,1}

1. Initialize wy = 0 € R*!
2. For each training example (X, y,):
e Predict y' = sgn(w!x.)
o ify' F yy:
Update w,, | < W, + ryx; — This is called the perceptron update

!

This update has to produce a new
set of weights w, ; taking error into
account. How?

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € R,
y, € {—1,1}

1. Initialize wy = 0 e R+l
2. For each training example (xi, yl.);
e Predicty’ = Sgn(WtTXi)
o if y' # yu:
Update W, | < W, + ryX,

ris the learning rate, a hyperparameter,
typically a number between 0 and 1

If 7 is too small: slow too converge

if 7 is too big: may not converge

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € R,
y, € {—1,1}

1. Initialize wy = 0 € R4+ _ - — 4
Mistake on positive: w,, | < w,+rx, |Vi =

2. For each training example (X;, y,): Mistake on negative: w, | < W, — rx; |y = — |
e Predict y' = sgn(w!x.)
o ify' F yy:
Update w, | < W, + ryX;

!

y; is either -1 or +1 so yX; is
either —X; or +X;

/ y; used here to combine update into 1 equation

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € R,
y, € {—1,1}

1. Initialize wy = 0 e R+l
2. For each training example (xi, yl.);
e Predicty’ = Sgn(thXi)
o if y' # yu:
Update W, | < W, + ryX,

3. Return final weight vector

N

Stop when you run out of examples
and return latest weight vector

The perceptron algorithm

Input: A sequence of training examples (X, y;), (X5, ¥»), *=- where all X; € R,
y, € {—1,1}

1. Initialize wy =0 € R d+1

2. For each training example (X, y,):

e Predict y' = sgn(w!x.) — Mistake can be

o ify %y written as y;w/x, < 0
Update w, | < W, + ryX;

3. Return final weight vector

The perceptron algorithm

Original way of writing mistake
y' = sgn(w/x,)
y' # y;is a mistake

Can alternatively write
sgn(wy X;) # ¥,
-1 +1
+1 -1

Mistake can thus be written as
T
y;sgn(w, x;) <0
)’thT x; <0

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Perceptron
THE WEIGHT UPDATE

Mistake on positive: W, | < W, + X,

Intuition behind the update |..iconnestive: s, — o s

Suppose we have made a mistake on a positive example
Thatis,y =+ 1 and w/x <0

Call the new weight vector
W, =W +X (sayr = 1)

Mistake on positive: W, | < W, + X,

Intuition behind the update |..iconnestive: s, — o s
Suppose we have made a mistake on a positive example
Thatis,y =+ 1 and w/x <0

Call the new weight vector
W, =W +X (sayr = 1)

The new dot product is
wl =W, +x'x=wix+x'x > wx

For a positive example, the Perceptron update will increase
the score assigned to the same input if score was negative

Mistake on positive: W, | < W, + X,

Intuition behind the update |..iconnestive: s, — o s

l

Suppose we have made a mistake on a positive example
Thatis,y =+ 1 and w/x <0

Call the new weight vector
W, =W +X (sayr = 1)

The new dot product is
wl =W, +x'x=wix+x'x > wx

For a positive example, the Perceptron update will increase
the score assigned to the same input if score was negative

Similar reasoning for negative examples: if score was
positive it will decrease the score

. Mistake on positive: W, | < W, + X,
A sSim ple exam ple Mistake on negative: W[_I_ll “— W, —rx;
0 1 1 X2
w= 0| x,=|-2| x,=13 (3,5
0 2 5
(=2,2)

. Mistake on positive: W, | < W, + X,
A sSim ple exam ple Mistake on negative: W[_I_ll “— W, —rx;
0 1 1 X2
w= 0| x,=|-2| x,=13 (3,5
0 2 5
(=2,2)
X1 <

wix, =0x1+0x(=2)+0x2=0

A simple example

]

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

X1 <
wix; =0x1+0x(-2)+0x2=0)

A simple example

]

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

X1 <
wix; =0x1+0x(-2)+0x2=0)

B0] A
w=|0-(-2) :[2]
- 0-@)]

A simple example

]

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

X1 <
wix; =0x1+0x(-2)+0x2=0)

B0] A
w=|0-(-2) :[2]
- 0-@)]

wal=—1><1+2><(—2)+(—2)><2=—9\/

. Mistake on positive: w,, | < W, + rx;
A sSim ple exam ple Mistake on negative: w:l “— W, —rx;
-1 1 1 X2
w=| 2| x,=[=2] x,=[3 (3,5
-2 2 5
(=2,2)

. Mistake on positive: W, | < W, + X,
A sSim ple exam ple Mistake on negative: W[_:l “— W, —rx;
-1 1 1 X2
w=| 2| x,=[=2] x,=[3 (3,5
-2 2 5
(=2,2)

x:
wa2=—1><1+2><3+(—2)><5=—5x

A simple example

[

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

x:
wa2=—1><1+2><3+(—2)><5=—5x

W = W+ X,

A simple example

[

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

x:
wa2=—1><1+2><3+(—2)><5=—5x

W = W+ X,
1+ To
W= 2+3)| = |5
-2+ (5) 3

A simple example

[

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

x:
wa2=—1><1+2><3+(—2)><5=—5x

W = W+ X,

—1+()] [0
W= 24+@3)| =15
—2+(35)| 3]

wa2=O><1+5><3+3><5=30\/

A simple example

[

(=2,2)

X2

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

(3,5)

x:
wa2=—1><1+2><3+(—2)><5=—5x

W = W+ X,

—1+()] [0
W= 24+@3)| =15
—2+(35)| 3]

wa2=O><1+5><3+3><5=30\/
wa1=O><1+5><(—2)+3><2:—4\/

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

A simple example

-1 1 1 X2

W= [2] X| = [—2] X, = [3] (3,5)
—2 2 5

(—2,2)
X <

wa2=—1><1+2><3+(—2)><5=—5x

W = W+ X,
—1+M]| o

W = 2+(3) — 5 WTX=5)C1+3X2=O
—2+(5) 3

5(=3)+3(05)=0

Wi, =0x1+5x3+3x5=30V 3(3) +3(=5)=0
wa1=O><1+5><(—2)+3><2:—4\/

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

A simple example

-1 1 1 X2
w=| 2| x,=[=2] x,=13 (=3.,5 (3,5)
-2 2 5
(=2,2)
X, N\
wa2=—1><1+2><3+(—2)><5=—5x \
—1+(D] [0
W = 2+(3) — 5 WTX=5)C1+3X2=O
-2+0)] 13

5(=3)+3(05)=0

Wi, =0x1+5x3+3x5=30V 3(3) +3(=5)=0
wa1=O><1+5><(—2)+3><2:—4\/

Geometry of the perceptron update

Predict

Weight vector is normal to hyperplane,

Wold points in direction of positive examples

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Woid

(x, +1)

An example X is also a
vector and here has
label +1

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Geometric interpretation of dot product of w and x

w : .
. wix=|w]||x|cos® where magnitude of vector is

0
7 givenby | w | = z wl-2
V i

(x, +1) If angle @ is more than 90 degrees, dot product is negative

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Geometric interpretation of dot product of w and x

w : .
. wix=|w]||Xx|cos® where magnitude of vector is

0
7 givenby | w | = z wl-2
V i

(x, +1) If angle @ is more than 90 degrees, dot product is negative

So what is happening here? What kind of mistake?

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Geometric interpretation of dot product of w and x

w : .
. wix=|w]||Xx|cos® where magnitude of vector is

0
7 givenby | w | = z wl-2
V i

(x, +1) If angle @ is more than 90 degrees, dot product is negative

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Woid

Update

How do we update weights
when mistake on positive
example?

(x, +1)

(x, +1)

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

W< W+ yX
Woid

(x, +1) (x, +1)

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

Woid

Vector addition:
End of w arrow is start of x arrow

(x, +1)

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

— W+ yx
Woid

Vector addition:

Blue dashed line is sum, w + X.
This sum is the new weight vector

(x, +1)

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict

Woid

Update

— W+ yx

Weight vector is
direction that is

normal to hyperplane

wnew

After

(x, +1)

Mistake on positive example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Weight vector
has rotated

Geometry of the perceptron update

Predict

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Geometric interpretation of dot product of w and x

wix=|w]||Xx|cos® where magnitude of vector is

givenby | w | = z wl-2
V i

If angle @ is less than 90 degrees, dot product is positive

Predict
0
(x, -1)
’ Woid
An example X is also a
vector and here has
label -1

So what is happening here? What kind of mistake?

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Geometric interpretation of dot product of w and x

wix=|w]||Xx|cos® where magnitude of vector is

givenby | w | = z wl-2
V i

If angle @ is less than 90 degrees, dot product is positive

Predict
0
(x, -1)
’ Woid
An example X is also a
vector and here has
label -1

Mistake on negative example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

Mistake on negative example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

W W+ yX

Vector addition:
y X points in opposite direction
of x because negative

Mistake on negative example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update

W/ W+ yx

Vector addition:

Blue dashed line is sum, w + X.
This sum is the new weight vector

(X, '1)
Wolid

Mistake on negative example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Geometry of the perceptron update

Predict Update After

Weight vector
has rotated

wnew

(X, '1)

(x, -1)
Wold ’ Weight vector is

direction that is
normal to hyperplane

Mistake on negative example

Mistake on positive: W, | < W, + X,
Mistake on negative: W, | <~ W, — r'X;

Perceptron Convergence

Perceptron Convergence Theorem: If there exist a set of
weights that are consistent with the data (i.e., the data is
linearly separable), the perceptron learning algorithm will
converge. Further, the number of times the perceptron
must adjust weights before convergence is upper bounded

Perceptron Convergence

Perceptron Convergence Theorem: If there exist a set of
weights that are consistent with the data (i.e., the data is
linearly separable), the perceptron learning algorithm will
converge. Further, the number of times the perceptron
must adjust weights before convergence is upper bounded

Perceptron Cycling Theorem: If the training data is not
linearly separable the perceptron learning algorithm will
eventually repeat the same set of weights and therefore
enter an infinite loop

Perceptron
PRACTICAL USE AND VARIANTS

Practical use

Randomize order of examples

= Avoid presenting examples in fixed order: re-permute
examples every iteration

= Improves convergence speed

Practical use

Randomize order of examples

= Avoid presenting examples in fixed order: re-permute
examples every iteration

= Improves convergence speed

Number of iterations to convergence

= Will converge if possible to converge, but how many
iterations?

= While the convergence theorem gives a bound, you will not
get an exact number

= Number of iterations depends on how much distance
between hyperplane and nearest point

The perceptron algorithm

Given a training set D = {(x;,y,)} where x; € R y. € {-1,1}

1. Initialize wy = 0 € R
2. For each training example (X;, y,):
e Predict y’ = sgn(w!x,
o if y' £ y;:
Update w,, | < W, + 7y.X;
3. Return final weight vector

The perceptron algorithm

Given a training set D = {(x;,y,)} where x; € R y. € {-1,1}

1. Initialize wy = 0 € SRa+1

2. For each training example (Xi» yl.);
e Predict y' = sgn(w!x.)
o ify' # y:

Update W, < W, +7yX; \ Mistake can be
3. Return final weight vector written as y;w'x, < 0
iV A=

The standard algorithm

Given a training set D = {(x;,y,)} where x; € R y. € {-1,1}

1. Initialize w = 0 € R
2. Forepochinl...T:
e Shuffle the data
e For each training example (X;, y;):
if yw/x. < 0: update w,,| < W, + ryx

3. Return w

The standard algorithm

Given a training set D = {(x;,v,)} where x; € R, y. € {-1,1}

1. Initialize w = 0 € R+!] Mimic infinite stream of

. T'isahyper- examples by going over data
0_>
2. Forepochin 1.3 parameter 3g5ain and again. Each pass

* Shuffle the data over data is called an epoch
e For each training example (X;, y;):

if yw/x. < 0: update w,,| < W, + ryx

3. Return w

The standard algorithm

Given a training set D = {(x;,v,)} where x; € R, y. € {-1,1}

1. Initialize w = 0 € RH!
2. Forepochinl...T:

Every epoch go through examples
e Shuffle the data —» in different random order
e For each training example (X;, y;):
if yw/x. < 0: update w,,| < W, + ryx

3. Return w

The standard algorithm

Given a training set D = {(x;,y,)} where x; € R y. € {-1,1}

1. Initialize w = 0 € R
2. Forepochin1...T:
e Shuffle the data
e For each training example (X;, y;):
if yw/x. < 0: update w,,| < W, + ryx

3. Return w

Prediction on a new example with features X: Sgn(WTX)

Learning rate

Recall the update rule

Wi < W+ r(yX;)

ris called the learning rate or step size

» When you update w;to be more positive or negative, this controls
the size of the change you make (or, how large a “step” you take)

Learning rate

Recall the update rule
Wi < W, +r(yx;)

ris called the learning rate or step size

» When you update w;to be more positive or negative, this controls
the size of the change you make (or, how large a “step” you take)

How to choose the step size?
> |f 7 is too small, the algorithm will be slow because the updates
won’t make much progress

> If 7 is too large, the algorithm will be slow because the updates
will “overshoot” and may cause previous correct classification to

become incorrect

Learning rate

Perceptron often just usesr = 1

> When we see gradient descent, setting learning rate will be
more important

Learning rate

Perceptron often just usesr = 1

> When we see gradient descent, setting learning rate will be
more important

Why?
> Learning rate in case of perceptron just scales the weights
and hence the dot product w!x, but we only care about
the sign
> Same number of mistakes will be made regardless of

learning rate, and we know that some number of mistakes
must be made

How do you know which line is best?

y=x1Vx2

Xq +XZZ“1

N

Perceptron will find a set of weights
that separates classes if linearly
separable, but not guaranteed to find
the weight vector that separates the
classes the best

How do you know which line is best?

y=x VX, xl"‘sz‘_1

x1+x222\ 1

How do you know which line is best?

y=x VX, xl"‘sz‘_1

x1+x222\ 1

How do you know which line is best?

y=x VX, xl"‘sz‘_1

xrkxzs

Infinite number of functions, learning
algorithm has to return just one

Some of these lines are better for
generalization if there is noise in the data

X2

How do you know which line is best?

y=x VX, x1+x22“1

x1+x222\ 1

Rather than just return the -- -
final weight vector, let’s try
something different

Perceptron variants

Voted perceptron
» Remember every weight vector in your sequence of updates

> At final prediction time, each weight vector gets to vote on the
label. The number of votes it gets is the number of iterations it

survived before being updated

Return sequence of (weights, # of examples survived)

Every one of those weight vectors votes on final prediction,
gets as many votes as # of examples survived

What'’s the problem?

Perceptron variants

Voted perceptron
» Remember every weight vector in your sequence of updates

> At final prediction time, each weight vector gets to vote on the
label. The number of votes it gets is the number of iterations it
survived before being updated

Return sequence of (weights, # of examples survived)

Every one of those weight vectors votes on final prediction,
gets as many votes as # of examples survived

What's the problem? Too many things to remember. What if
1 million features so weight vectors of 1 million?

Perceptron variants

Voted perceptron
> Remember every weight vector in your sequence of updates

> At final prediction time, each weight vector gets to vote on the
label. The number of votes it gets is the number of iterations it

survived before being updated

> Comes with strong theoretical guarantees about
generalization, impractical because of storage issues

Averaged perceptron

> Instead of using all weight vectors, use the average weight
vector (i.e., longer surviving weight vectors get more say)

> More practical alternative and widely used

Perceptron variants

Voted perceptron
> Remember every weight vector in your sequence of updates

> At final prediction time, each weight vector gets to vote on the
label. The number of votes it gets is the number of iterations it

survived before being updated

> Comes with strong theoretical guarantees about
generalization, impractical because of storage issues

Averaged perceptron

> Instead of using all weight vectors, use the average weight
vector (i.e., longer surviving weight vectors get more say)

> More practical alternative and widely used

Weight vector that survives longer should dominate the average

Averaged perceptron

Given a training set D = {(x;,V,)} where x, € R4, y. € {—1,1}

1. Initializew =0 € R anda = 0 € RI!

2. Forepochin1...T: Average vector

e Shuffle the data
e For each training example (X;, y;):
if yw!x; < 0: update w,, | < W, + ryx,
a—->a+w

\ Remember every weight vector
3. Return a in your sequence of updates

Averaged perceptron

Given a training set D = {(x;,V,)} where x, € R4, y. € {—1,1}

1. Initializew =0 € R anda = 0 € RI!

2. Forepochin1...T: Average vector

e Shuffle the data
e For each training example (X;, y;):
if yw!x; < 0: update w,, | < W, + ryx,
a—->at+w

\ Remember every weight vector
3. Return a in your sequence of updates

Prediction on a new example with features X: Sgn(aTX)

Averaged perceptron

Given a training set D = {(x;,V,)} where x, € R4, y. € {—1,1}

1. Initializew =0 € R anda = 0 € RI!

2. Forepochin1...T:
e Shuffle the data

e For each training example (X;, y;):
if yw!x; < 0: update w,, | < W, + ryx,
a—->a+w

3. Return a

This is the simplest version of the averaged perceptron

Extra vector addition step: there are easy programming tricks to
make sure that a is also updated only when there is an error

Averaged perceptron

Given a training set D = {(x;,V,)} where x, € R4, y. € {—1,1}

1. Initializew =0 € R anda = 0 € RI!

2. Forepochin1...T:
e Shuffle the data

e For each training example (X;, y;):
if yw!x; < 0: update w,, | < W, + ryx,
a—->a+w

3. Return a

If you want to use the Perceptron algorithm, use averaging

Margin perceptron

Perceptron makes updates only when the prediction is
incorrect

inTXl- <0

Margin perceptron

Perceptron makes updates only when the prediction is
incorrect

yw!ix. <0

What if the prediction is close to being incorrect? Pick a
small positive 7 and update when

|
| |
mistake O n
If the current w gives

labels very close to
hyperplane that is bad
even if correct

T
VWX, <1

Margin perceptron

Perceptron makes updates only when the prediction is
incorrect

yw!ix. <0

What if the prediction is close to being incorrect? Pick a
small positive 7 and update when

| |
inTXi <7 I

|
mistake O n
If the current w gives

_ labels very close to
Can generalize better, but need to choose 17 hyperplane that is bad
even if correct

Multi-class perceptron

Given a training set D = {(X,,y;) } where
x, € R™*y. € {1,2,3,..., k)

Multi-class perceptron

Given a training set D = {(X,,y;) } where
x, € R™*y. € {1,2,3,..., k)

One approach: reduce multi-class problem
to binary problems

3 min: How might you do that?

Multi-class perceptron

Given a training set D = {(X,,y;) } where

°
d+1 o0
x; € R,y e {1,2,3,...,k} o ©
o)
. A
One approach: reduce multi-class problem ® o
to binary problems
ldeally: only correct label has positive score
0.. OOO OOO
o © o © o ©
° %% w e %%
© O ¢ e} © O

T T T
Whiack * >0 Whive ¥ >0 Wgreen. x>0

