
Lecture 8: Transport Layer
Overview and UDP

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 3 due 11:59p

2. Headers and payloads
– recap

3. Transport layer
– overview
– multiplexing and demultiplexing
– User Datagram Protocol (UDP)

vumanfredi@wesleyan.edu 2

Headers and Payloads

vumanfredi@wesleyan.edu 3

Network layer header
Network data (i.e., payload)

Transport (e.g., TCP) header
Transport data (i.e., payload)

App layer header
App data (i.e., payload)

Link layer header
Link data (i.e., payload)

Each layer only looks at the header associated with that layer
vumanfredi@wesleyan.edu 4

Transport Layer

vumanfredi@wesleyan.edu 5

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

logical end-end transport

Physical

Transport

Network

Link

Application
• Logical communication

between processes on
end hosts

• Relies on, enhances,
network layer services

• Logical communication
between end hosts

• IP header does not contain
port #s

What problems must transport
layer address?

vumanfredi@wesleyan.edu 6

Problem 1: no port #s in network-layer (IP) header
– how do pkts get from host to process on host?

Problem 2: network layer protocol (IP) is best effort
– packets can be corrupted, dropped, duplicated,

reordered, delayed
– pain for app developer to deal with

Problem 3: IP gives no guidance about rate at
which to send packets

– sends whatever it receives immediately
– traffic can easily overwhelm network, host

Problem 4: IP packets must be reassembled back
into original messages

– pain for app developer to deal with
7vumanfredi@wesleyan.edu

Transport layer services

Reliable data transfer

Congestion, flow control

Data stream

(De)Multiplexing

Congestion, flow control

Problem 1: no port #s in network-layer (IP) header
– how do pkts get from host to process on host?

Problem 2: network layer protocol (IP) is best effort
– packets can be corrupted, dropped, duplicated,

reordered, delayed
– pain for app developer to deal with

Problem 3: IP gives no guidance about rate at
which to send packets

– sends whatever it receives immediately
– traffic can easily overwhelm network, host

Problem 4: IP packets must be reassembled back
into original messages

– pain for app developer to deal with
8vumanfredi@wesleyan.edu

Transport layer services

Reliable data transfer

Data stream

(De)Multiplexing

UDP, TCP

TCP

TCP

TCP

Only service transport
layer MUST provide!

TCP: reliable, in-order delivery
– connection-oriented
– congestion control
– flow control
– connection setup

UDP: unreliable, unordered delivery
– connectionless
– no-frills extension of best-effort IP

Q: What services are not available
– delay guarantees
– bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

logical end-end transport

vumanfredi@wesleyan.edu 9

Transport Layer

vumanfredi@wesleyan.edu 10

Transport protocols
– run in end systems
– provide logical communication

• between app processes running on different hosts

Send side
– breaks app messages into segments (TCP) or datagrams (UDP)
– passes to network layer

Receive side
– reassembles segments or datagrams into messages
– passes to app layer

vumanfredi@wesleyan.edu 11

12 kids in Alice’s house send letters to 12 kids in Bob’s house
– hosts = houses
– processes = kids
– app messages = letters in envelopes
– transport protocol = Ann and Bill who demux to in-house siblings
– network-layer protocol = postal service

12vumanfredi@wesleyan.edu

process

socket

Use header info to deliver
received segments to correct
socket

Demux at receiver
Handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Mux at sender

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4
transport

application

physical
link

network

P3

Determines which packets go to which app

13

Host receives IP packets
– packet header contains

• source IP address
• destination IP address

– packet payload is
• one transport-layer segment or

datagram
– transport-layer header contains

• source port number
• destination port number

Host uses IP addresses & port
numbers to direct segment or

datagram to appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

Format of TCP segment
or UDP datagram

vumanfredi@wesleyan.edu 14

TCP socket identified by
4-tuple

1. source IP address
2. source port number
3. dest IP address
4. dest port number

Demux
– receiver uses all four

values to direct segment
to appropriate socket

Server host
– may support many

simultaneous TCP sockets
– each socket identified by

its own 4-tuple

Web servers
– have different sockets for

each connecting client
– non-persistent HTTP will

have different socket for
each request

vumanfredi@wesleyan.edu 15

transport

application

physical
link

network

P3
transport

application

physical
link

P4

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

3 segments, all destined to IP address B, dest port 80:
are demultiplexed to different sockets

16

IP address A IP address C
IP address B

transport

application

physical
link

network

P3
transport

application

physical
link

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

3 segments, all destined to IP address B, dest port 80:
are demultiplexed to different sockets

17

IP address A IP address C
IP address B

P4

threaded server

UDP socket
– random host-local port # allocated

sock = socket(AF_INET,SOCK_DGRAM)
port# allocated: 9157

– when sending data into UDP socket, must specify
1. destination IP address
2. destination port #

Host receives UDP datagram
• checks destination port # in

UDP header on datagram
• directs UDP datagram to

socket with that port #

IP pkts with same dst IP, port #
but different src IP addr and/or
src port #s: will still be directed

to same socket at dst!

vumanfredi@wesleyan.edu 18

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

server_sock =
socket(AF_INET,
SOCK_DGRAM)
server_sock.bind((
localhost,6428))

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

sock2 =
socket(AF_INET,
SOCK_DGRAM)
Port# allocated:9157

sock1 =
socket(AF_INET,
SOCK_DGRAM)
Port# allocated:5775

Q: what are missing
src/dst ports? 19

Start with UDP
– since protocol is much simpler to understand

Then look at TCP
– start with toy protocol to build up pieces we need for full protocol

20vumanfredi@wesleyan.edu

Transport Layer

vumanfredi@wesleyan.edu 21

No frills Internet transport protocol
– best effort service

• UDP segments may be lost, delivered out-of-order to app
– to add reliable transfer over UDP

• add reliability at application layer
• application-specific error recovery!

– uses of UDP
• streaming multimedia apps (loss tolerant, rate sensitive)
• DNS, SNMP

Connectionless
– no handshaking between UDP sender, receiver
– each UDP segment handled independently of others

vumanfredi@wesleyan.edu 22

Read/write packets
– only packets with matching 2-tuple (dst ip

and dst port) are pushed to application

vumanfredi@wesleyan.edu

Internet
transport

application

physical
link

network

processIP1, Port1

IP2, Port2

Source 1

Source 2

IP1,Port1,
IP3,Port3

IP3, Port3

IP2,Port2,
IP3,Port3

IP1,Port1,
IP3,Port3

IP2,Port2,
IP3,Port3

Destination

Close clientSocket

Read datagram from clientSocket

Create socket, bind it to port = y:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with
serverIP and port=x; send
datagram via clientSocket

Create socket, bind it to port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

Read datagram from
serverSocket

Write reply to serverSocket
specifying clientIP, port = y

Server running on serverIP Client running on clientIP

vumanfredi@wesleyan.edu

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever
Read from UDP socket into

message, getting client’s
address (client IP and port)
send upper case string

back to this client

vumanfredi@wesleyan.edu

vumanfredi@wesleyan.edu

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket library

create UDP socket for server
get user keyboard input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

source port # dest port #

32 bits

application
data

(payload)

UDP datagram format

length checksum

length, in bytes of
UDP datagram,

including header

Why is there a UDP?

vumanfredi@wesleyan.edu 27

– no connection
establishment (which can
add delay)

– simple: no connection
state at sender, receiver

– small header size
– no congestion control:

UDP can blast away as
fast as desired

source port # dest port #

32 bits

application
data

(payload)

UDP datagram format

length checksum

length, in bytes of
UDP datagram,

including header

Why is there a UDP?

vumanfredi@wesleyan.edu 28

Errors
– not just introduced during transmission over links
– can be introduced in memory, at router, at lower layer

UDP does not provide error recovery
– may drop datagram
– may pass datagram data to app with warning

UDP does provide error detection
– it’s useful to know something damaged even if don’t fix
– Q: How?

• Checksum

29vumanfredi@wesleyan.edu

Sender
1. Views datagram contents,

including header fields and
user data, as sequence of
16-bit integers
• skip checksum field

2. Computes checksum
• adds 16-bit integers together

using 1s complement
arithmetic and then takes 1s
complement of result

3. Puts checksum value in UDP
checksum field

Goal: detect “errors” (e.g., flipped bits) in
transmitted datagram

Receiver
1. Computes its own checksum

over datagram including
checksum in UDP header

2. Result should equal all 0s if
no errors
• NO: error detected
• YES: no error detected
• Q: can there still be errors?

vumanfredi@wesleyan.edu 30

Example: add two 16-bit integers
1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most significant
bit needs to be added to the result

Q: Why 1s complement? Why check for 0s?
– for efficiency: computed very fast in hardware
– independent of machine endianness

Summing these
should give all 1s, flip

bits should give 0
vumanfredi@wesleyan.edu 31

32vumanfredi@wesleyan.edu

