Lecture 5: Application Layer Overview and HTTP

COMP 332, Spring 2024 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved.

Today

Announcements

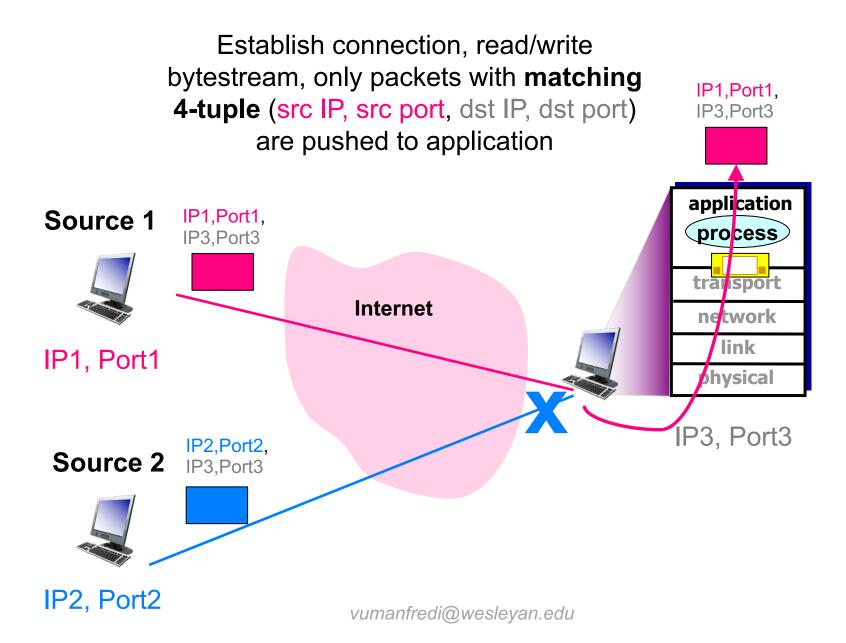
- homework 2 due Wed. by 11:59p

Network Measurement

- Wireshark: looking at real traffic
- Sources of delay
- Traceroute

Application layer

- Overview
- Web and HTTP


HTTP protocol

- Requests, responses, error codes

Last Time

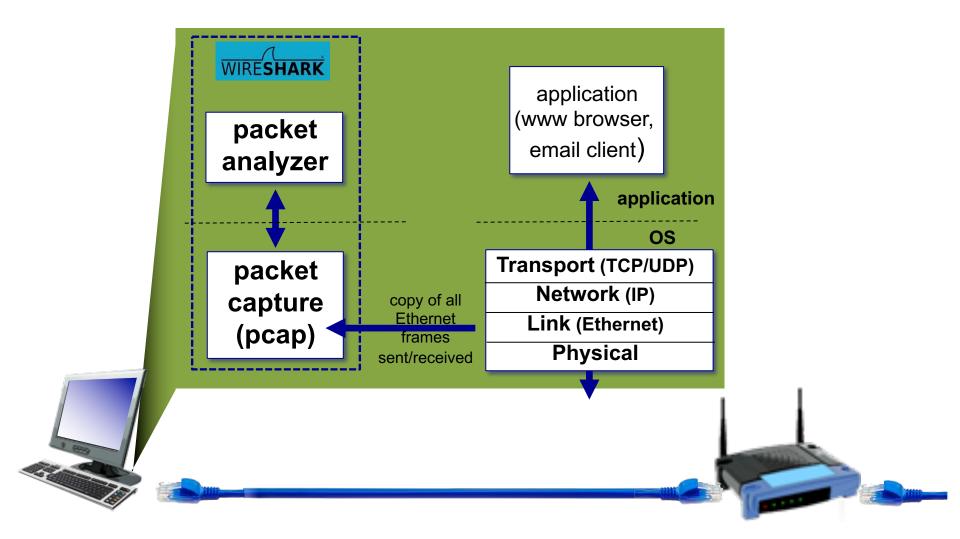
vumanfredi@wesleyan

TCP Socket

Network Measurement WIRESHARK

vumanfredi@wesleyan

How can I look at network traffic?


Packet sniffer

- passively observes messages transmitted and received on a particular network interface by processes running on your computer
- often requires root privileges to run

Popular packet sniffers

- Wireshark (also command-line version, tshark)
- tcpdump (Unix) and WinDump (Windows)
- use command line sniffers to analyze packet traces with bash script

Packet sniffer operation

vumanfredi@wesleyan

Wireshark

Install

- https://www.wireshark.org/download.html

Run

- type Wireshark in terminal, or double-click icon
- Wireshark display may look different for Linux vs. Mac vs. Windows

>>

• • •	•	🚄 The W	ireshark Networ	k Analyzer	
	1 🖉 🔘 📘 🛅		۹ 🗭 🔿	1	⊕ ⊖
Appl	y a display filter <発/>				 Expression
	Welcome to Wireshark				
	Capture				
	using this filter: 📜 Enter a d	capture filter			*
Choose an	Wi-Fi: en0 awdl0	m			
interface to	Thunderbolt Bridge: bridge0				
capture	Thunderbolt 1: en1 Thunderbolt 2: en2				
traffic on	p2p0 Loopback: lo0				

What do we see?

Apply a display filter	Display Fi	0 🦛 🔿 🖭	-Fi: en0		Expression +
No. Time 77 7.313771 78 7.313913	ource IP	Dest IP	Protocol		Protocol State 24fc A in estination unreachable (Port unrea
79 7.315676 80 7.374379	129.133.6.10 173.192.82.195 -29.133.182.236	129.133.178.53 129.133.182.236 173.192.82.195	DNS TLSv1.2 TCP	97 A;	tandard query response 0xbd43 A in pplication Data 2762 → 443 [ACK] Seq=1 Ack=32 Win=
Captured	29.133.182.236 73.192.82.195	173.192.82.195 129.133.182.236	TLSv1.2 TCP	101 Ap	pplication Data 43 → 62762 [ACK] Seq=32 Ack=36 Win
packets	29.133.182.236 129.133.72.61 129.133.182.236	129.133.72.61 129.133.182.236 129.133.72.61	TCP TCP TCP	181 [7	TCP segment of a reassembled PDU] TCP segment of a reassembled PDU] 2496 → 8009 [ACK] Seq=231 Ack=231
87 8.578356 88 8.622793 89 8.639661	JuniperN_1e:18:01 129.133.182.236 216.58.219.229	Broadcast 216.58.219.229 129.133.182.236	ARP TCP TCP	54 63	ratuitous ARP for 129.133.176.1 (R 3800 → 443 [ACK] Seq=1 Ack=1 Win=4 TCP ACKed unseen segment] 443 → 63
90 9.602437 91 9.848778	JuniperN_1e:18:01 129.133.182.236	Broadcast 198.105.244.104	ARP	64 G	ratuitous ARP for 129.133.176.1 (R 68 → 515 [SYN] Seq=0 Win=65535 Len
▶ Ethernet II, Src:	es on wire (1328 bits JuniperN_1e:18:01 (3	c:8a:b0:1e:18:01),	Dst: Apple_c5:b4		
▶ User Datagram Prot	Version 4, Src: 129. tocol, Src Port: 53 (55 (44065)		Packet

Domain Name System (response) 2 hex digits = 1 byte= 1 ascii char ►

		c1 c5													
00	98 2	20 98	00	00	3e	11	a0	72	81	85	06	Øb	81	85	
b2 00	L.	f you	oli	ck	on	nkt	or	ho	ode	or fi			-	01	.5.5.!\$
													93	63	i nt.nyt.c
6f	١	will h	igh	ligl	nt r	nex/	asc	cii f	ielo	ls a	anc			01	
ad			_	_	vic		ersa	a					79	74	manfredid card nyt
69					VIC		0130	a					55	79	imes.com.edgekey

Packet contents in hex and ascii: can match bytes to header

details

wireshark_pcapng_en0_20160824155218_HN8Ru3

0000

0010

0020

0030

0040

0050

0060

1

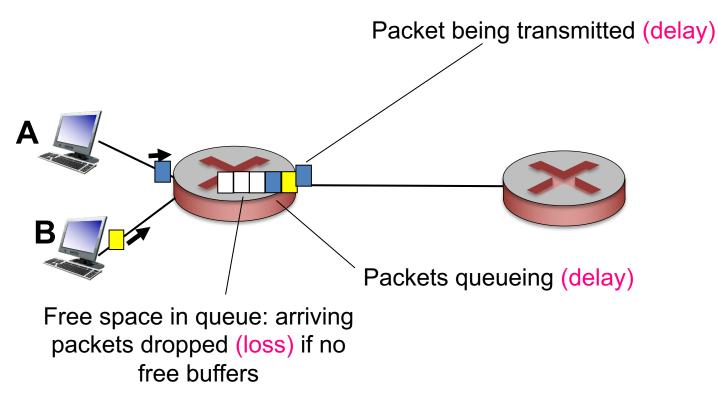
Packets: 48516 · Displayed: 48516 (100.0%) · Dropped: 0 (0.0%) Profile: Default

What do we see?

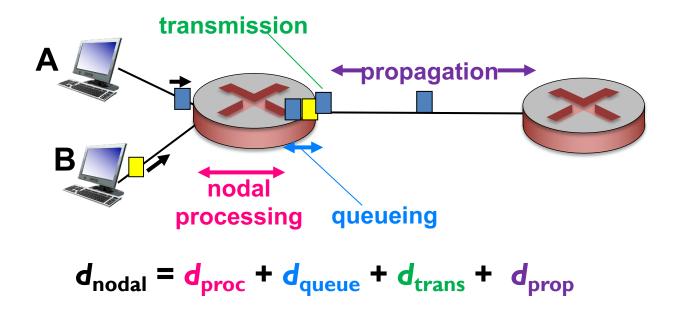
	8/ 8.5/8350	JuniperN_16:18:01 Bro	adcast AKP	64
	88 8.622793	129.133.182.236 216	.58.219.229 TCP	54
	89 8.639661	216.58.219.229 129	.133.182.236 TCP	66
Layers	90 9.602437	JuniperN_1e:18:01 Bro	adcast ARP	64
	91 9.848778	129.133.182.236 198	.105.244.104 TCP	78
Physical ———			6 bytes captured (1328 bits)	
Link———			b0:1e:18:01), Dst: Apple_c5:	b4:9a (78
		col Version 4, Src: 129.133.6		
Network —		Protocol, Src Port: 53 (53),	DST PORT: 44065 (44065)	
Transport	▶ Domain Name Sys	(response)		
Application		b4 9a 3c 8a b0 1e 18 01 08		
		00 00 3e 11 a0 72 81 85 06 ac 21 00 84 ee d2 24 fc 81		
		00 00 03 69 6e 74 03 6e 79		
	0040 6f 6d 00 00	01 00 01 c0 0c 00 05 00 01		
	0050 ad 00 22 08			
	0060 69 6d 65 73	03 63 6f 6d 07 65 64 67 65	6b 65 79 imes.com .edgekey	
	🔘 🏹 wireshark_pca	apng_en0_20160824155218_HN8Ru3	Packets: 48516	· Displayed: 4

Add a filter

	•	•														N	/i-Fi	enC)																
1	7		a		_	P1 P1		X	2		9						Σ	$\overline{\mathbf{A}}$	5						Ð	(Ð		2						
	(C	Dnly	у Т(CP	03.13		1017		-		•	~		-	-		-	-	<u> </u>		: -			-		-						1		
No	tcp		tra	affio	2				_		D	octio	ation			5	Se	e	0	nly	T	CF			fo.				ł	× -		EX	pressio	n	+
INC		8 0.35			-		3.18	2.23	36						.18				СР	J	-			1	TC	Ps	eam	ent	01	а	rea	sser	bled	PDU	1
		0.36						2.23							.18				СР															k=11	
	2	1 0.39	3788		129	. 133	3.18	2.23	86		5	2.2	09.2	21.	15			Т	СР															PDU	
	2	2 0.39	3789		129	. 133	3.18	2.23	86		5	2.2	09.2	21.	15			т	LS	v1.2	1	ΓΙ .	S	n	ro	te	C	n	r	un	C				
	2	5 0.49	9503		129	. 133	3.18	2.23	86		5	2.2	09.2	21.	15			Т	СР				U								3	=226	9 Ac	k=53	74
	3	0 1.72	5135		129	. 133	3.18	2.23	86		1	29.	133	.72	.22	3		Т	СР					0	ve	r	T	CF				sen	bled	PDU	1]
																					_			_	_		_					_			
►		me 18:		-									-			-																			
		ernet																				8:0	1 (3c	:8a	: b0	:1e	:18	:01)					
		ernet																					~ `	~											
1		nsmiss Source				rote	000	L, S	rc	Por	t:	629	19	(64	2919	, (,	DS	C PO	ort	: 800	09 (800	9),	50	eq:	1,	AC	к:	1,	Len	: 11	15			- 1
		Destin				200																													
		[Strea				005																													
		[TCP S			-	151																													
		Sequen	-				rel	ativ	e	sea	uen	ce	numt	ber)																				
		[Next													e ni	umb	er)]																	
		Acknow	ledgm	nent r	umb	er:	1	(r	ela	ati	ve a	ack	nur	nbe	r)																				
		Header	Leng	th: 3	32 b	ytes	5																												
		Flags:			-																														
		Window																																	
		[Calcu	lated	d wind	wob	size	: 4	096]						_																					
	000	3c 8a		_		_		c1 c	-											••••															
	010	00 a7 49 12						c5 8 0e 1	_		_			_						.j.:															
	030	10 00						08 0												.A															
0	040	7d e2	17 0	03 03	00	5e 0	00	00 0								-																			
	050 060	73 6f 4e 63						bd 1 al d							1/1 IP	m	eir	edi	0	wesi	c. leyka	an													
() 7	Tran	smissio	on Cont	rol Pro	otoco	l: Pro	tocol										F	Pac	kets: 4	8516	·Dis	play	ed:	465	27 (9	95.99	6) · D	Drop	ped: I	0 (0.	0%)	Profil	e: Defa	ault


Network Measurement SOURCES OF DELAY

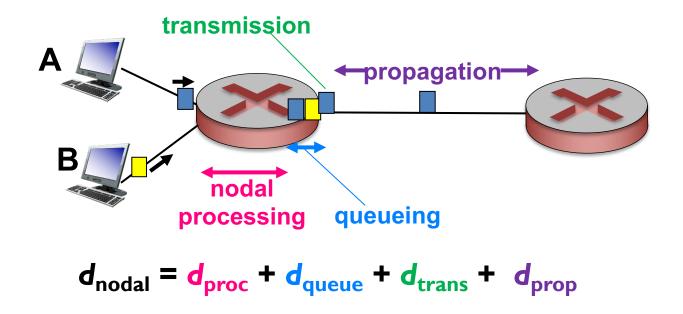
vumanfredi@wesleyan


How do delay and loss occur?

If link arrival rate > transmission rate link for some time

- packets will queue, wait to be transmitted on link
- packets can be dropped (lost) if memory (buffer) fills up
- lost packet may be retransmitted by previous node, by source end system, or not at all

Four sources of packet delay


*d*_{proc}: processing delay

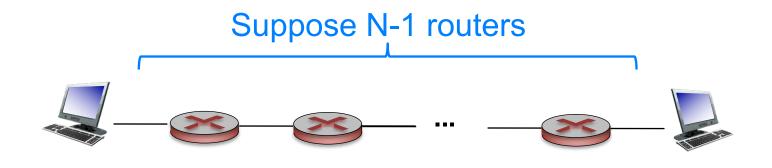
- check bit errors
- determine output link
- fast: typically < msec</p>
- usually done in hardware not software

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

 d_{trans} : transmission delay d_{prop} : propagation delay


- depends on link bandwidth
- L: packet length (bits)
- R: link bandwidth (bps)

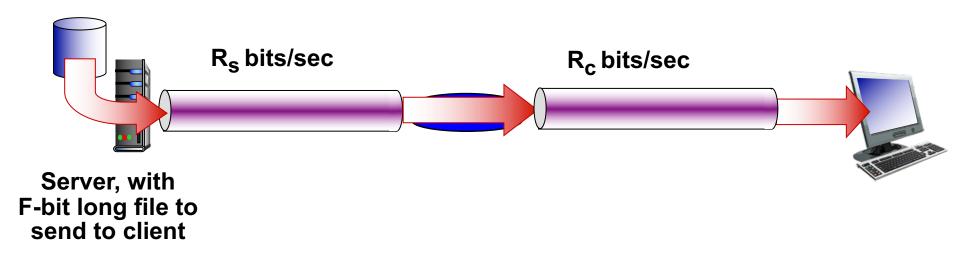
- $d_{trans} = L/R \leftarrow d_{trans}$ and $d_{prop} \rightarrow d_{prop} = d/s$ *very* different

- $-\mu$ s (within campus) to ms (satellite link)
- d: length of physical link
- s: propagation speed ($\sim 2x10^8$ m/s)

vumanfredi@weslevan

End-to-end delay

Q: what is end-end delay ignoring queuing delay?

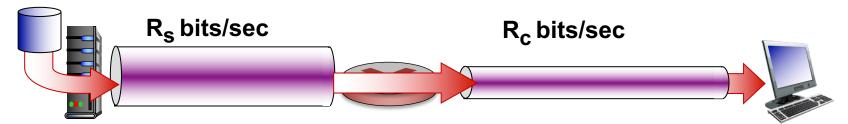

End-end delay = $N * (d_{\text{proc}} + d_{\text{trans}} + d_{\text{prop}})$

vumanfredi@wesleyan

Throughput

Rate at which bits transferred between sender/receiver

- measured in bits/time unit
- instantaneous: rate at given point in time
- average: rate over longer period of time

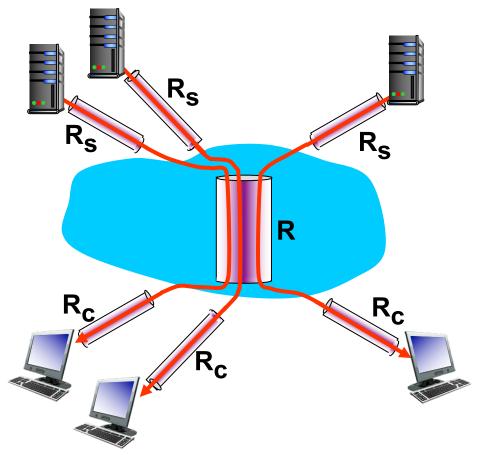


Throughput

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link


link on end-end path that constrains end-end throughput

Internet scenario

Per-connection endend throughput – *min*(*R_c*, *R_s*, *R*/10)

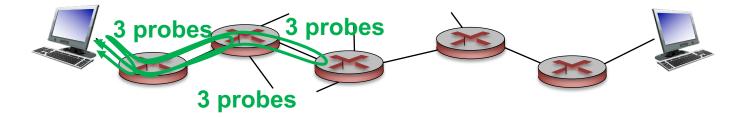
In practice

R_c or *R_s* is often bottleneck

10 connections (fairly) share *R* bits/sec backbone bottleneck link

Network Measurement TRACEROUTE

vumanfredi@wesleyan

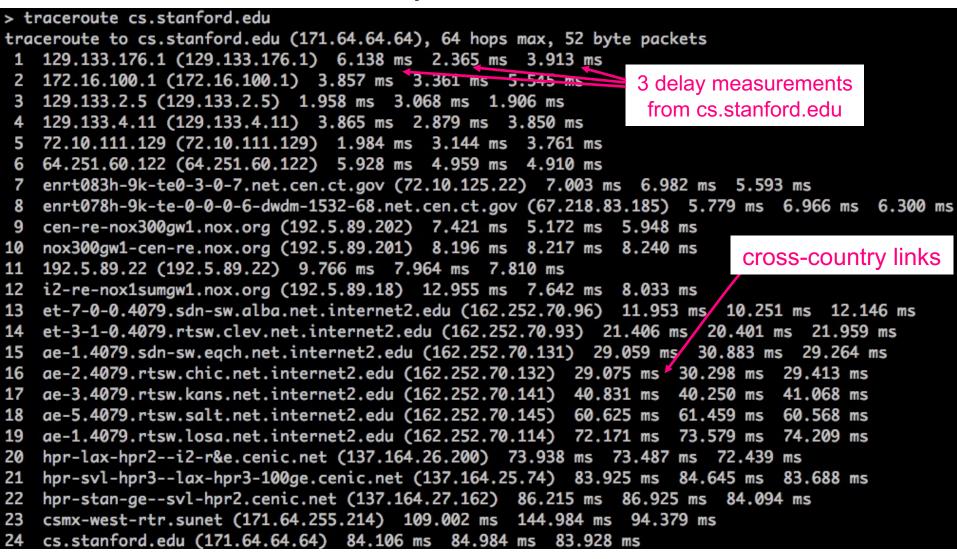

Real Internet delays and routes

Traceroute program

provides delay measurement from source to router along end-end
Internet path towards destination

How?

- for all i:
 - sends three packets that will reach router i on path towards destination
 - sets packet time-to-live (TTL) to i
 - router i will return packets to sender
 - sender times interval between transmission and reply for each packet
 - measures Round Trip Time (RTT) delay



Note

- different probe packets may take different paths, so delays can vary

Real Internet delays, routes

traceroute: from wesleyan network to cs.stanford.edu

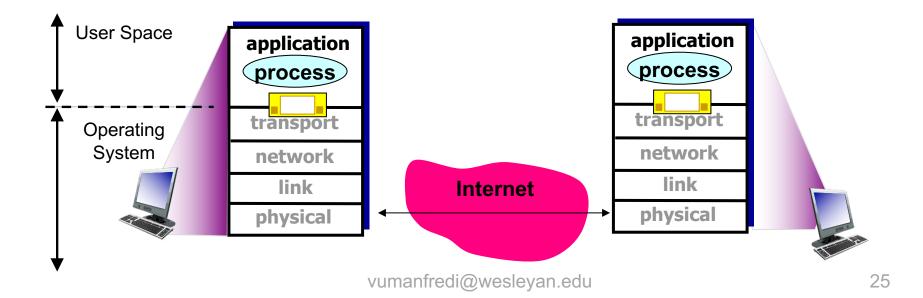
* means no response (probe lost, router not replying)

Using wireshark

Run traceroute and see what traffic is generated

vumanfredi@wesleyan.edu

Application Layer OVERVIEW


Application layer: where apps live

Application software

- processes running different hosts, communicate via messages

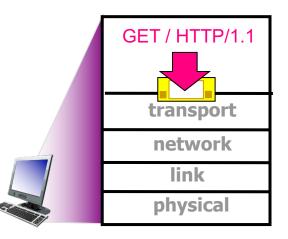
Application architecture

- client-server vs. peer-to-peer vs. hybrid
- overlaid on network architecture

Application layer protocols

Provide specific services to application

Define


- types of messages exchanged
 - e.g., request, response
- message syntax
 - fields in messages, how delineated
- message semantics
 - meaning of info in fields
- rules
 - for when and how processes send and respond to messages

Rely on transport layer

 to get messages from process on one host to process on another host

Open protocols

- defined in RFCs
- support interoperability
- e.g., HTTP, SMTP
- Proprietary protocols – e.g., Skype

Application requirements

Dictate what transport layer services application needs TCP or UDP (or SSL/TCP or QUIC if you're Google)?

Service	App requirements
Reliable data transfer: does all data need to be received?	Loss-tolerant? E.g. video?
Throughput: does data need to be delivered quickly? Is app sending lots of data?	Bandwidth sensitive? E.g., video Elastic traffic? E.g., use as much/little bandwidth as available
Timing: does data need to be delivered at certain min rate?	Time-sensitive? E.g., voice, video need low delay
Security: does data need to be secured from eavesdroppers and modification?	Encryption? Data integrity? Endpoint authentication? Confidentiality?

Services provided by Internet transport protocols

TCP service

- connection-oriented
 - setup required between client and server processes
- reliable transport
 - messages delivered to destination process without error and in-order
- congestion control
 - sender reduces sending rate when network is overloaded
- flow control
 - sender reduces sending rate when destination is overloaded
- does not provide
 - timing, minimum throughput or delay guarantee, security

UDP service

- unreliable data transfer
 - best-effort service between sender and destination processes
- does not provide
 - reliability
 - flow control
 - congestion control
 - timing
 - throughput guarantee
 - security
 - connection setup
- Q: why bother? Why is there a UDP?

Transport service requirements: common apps

	Application	Data loss	Throughput	Time sensitive					
	File transfer	no loss	elastic	no					
	E-mail	no loss	elastic	no					
	Web documents	no loss	elastic	no					
Real-	-time audio/video	loss-tolerant	audio: 5kbps-1Mbps video:10kbps-5Mbps	yes, 100' s msec					
St	ored audio/video	loss-tolerant	same as above	yes, few secs					
h	nteractive games	loss-tolerant	few kbps up	yes, 100's msec					
	Text messaging	no loss	elastic	yes and no					

Q: other apps you can think of?

Internet apps: application, transport protocols

Associated with each app is an app layer protocol: depending on app requirements, runs over specific transport protocols

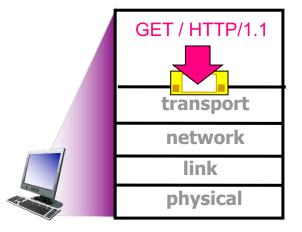
Application layer protocol	Underlying transport protocol
SMTP [RFC 2821]	TCP
	TCP
• •	TCP
	TCP
HTTP (e.g., YouTube), RTP [RFC 1889]	TCP or UDP
SIP, RTP, proprietary (e.g., Skype)	TCP or UDP
	layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (e.g., YouTube), RTP [RFC 1889] SIP, RTP, proprietary

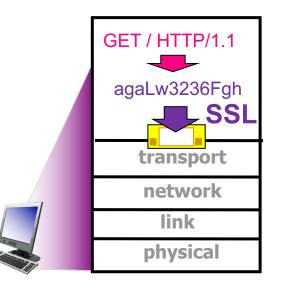
Q: where does security come into play?

Securing TCP

TCP & UDP

 no encryption: cleartext passwords sent into socket traverse Internet in cleartext


TLS/SSL


- at app layer
 - apps use SSL libraries, that "talk" to TCP
- provides encrypted TCP connection
 - data integrity
 - end-point authentication

TLS/SSL socket API

 cleartext passwords sent into socket traverse Internet encrypted

Q: Why does SSL run over TCP? How is TLS/SSL related to OSI model?

Network Applications WEB AND HTTP

Web's application layer protocol

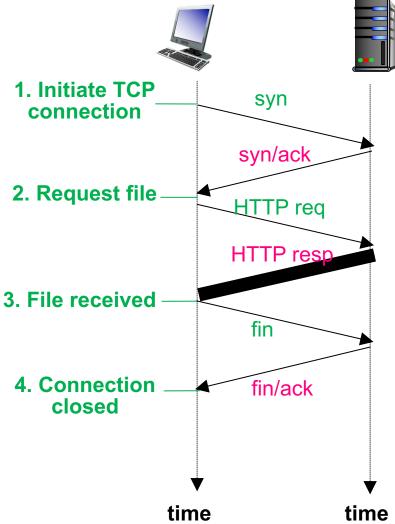
HTTP

HyperText Transfer Protocol

Client/server model

- client
 - browser that requests, receives, (using HTTP protocol) and "displays" Web objects
- server
 - Web server sends (using HTTP protocol) objects in response to requests

Safari browser


HTTP overview

When you click on a link

- 1. client initiates TCP connection
 - creates socket to server on port 80
- 2. server accepts TCP connection from client
- 3. HTTP messages exchanged between browser (HTTP client) and Web server (HTTP server)
- 4. TCP connection closed

Two types of HTTP messages

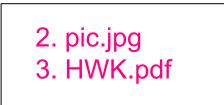
- request, response

HTTP is a stateless protocol

Stateless

- server maintains no information about past client requests

Why stateless?


- stateful protocols are complex
 - storage
 - state must be maintained for potentially many clients
 - server/client crashes
 - views of state may be inconsistent, must be reconciled
 - · workaround: cookies

Format of a webpage

Web page consists of objects

- object can be HTML file, JPEG image, Java applet, audio file,...
- typically includes base HTML-file and several referenced objects

1. index.html

All 3 objects must be requested from server in order to fully load webpage

Each object is addressable by URL, e.g.,

Q: How do we download multiple objects using HTTP?