
Lecture 24: Security
Authentication, TLS/SSL

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– Homework 8 due today at 11:59p (no coding)
– Homework 9 due Wednesday, May 8 at 11:59p (no written)

2. Network security
– authentication
– message integrity

3. Transport layer security
– overview
– toy TLS
– real TLS

2vumanfredi@wesleyan.edu

Goal: enable secure communication over insecure channel

Confidentiality
– only sender, intended receiver understand message contents

• sender encrypts message
• receiver decrypts message

– use cryptography: public/private key vs symmetric key

Authentication
– sender, receiver want to confirm identity of each other
– use nonce to confirm liveness, Certificate Authority to confirm identity

Message integrity
– sender, receiver want to ensure message not altered (in transit, or

afterwards) without detection
3

Network Security

vumanfredi@wesleyan.edu 4

Trudy poses as Alice (to Bob) and as Bob (to Alice)

I am Alice I am Alice

Nonce

T
K (Nonce)-

Send me your
public key

TK
+

AK (Nonce)
-

Send me your
public key

AK +

TK (m)
+

Tm=K (K (m))+
T

-

sends m to Alice encrypted
with Alice’s public key

AK (m)
+

A
m = K (K (m))+

A
-

Nonce

5

Use certification authority (CA)
– binds public key to particular entity

• e.g., Alice, Bob, website, …
– 100s of certification authorities

Aside
– CAs are critical but potentially weak link …

vumanfredi@wesleyan.edu 6

Alice registers her public key with CA
– Alice provides proof of identity to CA
– CA creates certificate binding Alice to its public key

• certificate digitally signed by CA

Alice’s
public

key K A
+

Alice’s
identifying

information

Digital
signature
(encrypt)

CA
private

key K CA
-

K A
+

Certificate for
Alice’s public key,

signed by CA

7vumanfredi@wesleyan.edu

When Bob wants Alice’s public key
1. gets Alice’s certificate from Alice or elsewhere
2. applies CA’s public key to Alice’s certificate
3. gets Alice’s public key

Alice’s
public
key K A

+

Digital
signature
(decrypt)

CA
public

key
K CA

+

K A
+

vumanfredi@wesleyan.edu 8

9vumanfredi@wesleyan.edu

Network Security

vumanfredi@wesleyan.edu 10

Alice and Bob must be able to detect whether msg changed
1. verify msg originated from Alice
2. verify msg not tampered with on way to Bob

Solution
– digital signatures: cryptographic technique like hand-written signature

11

Secure
sender

Secure
receiver

Data Data

Alice

Trudy

Bob

Channel Data, control
messages

Recipient (Bob)
– applies Alice’s public key KA to

KA(m)
– if KA(KA(m)) = m whoever

signed m was Alice or has
Alice’s private key

Sender (Alice)
– encrypts msg m with her

private key KA to create
signed message, KA(m)

– proves she is owner/creator

Alice Bob

Dear Bob
The secret meeting

takes place at
midnight under the

old oak tree

Alice

Alice’s msg, m

Public key
encryption
algorithm

Alice’s private key
K A

-

Alice’s msg,
m, signed

(encrypted)
with her

private key

m, KA
- (m)

-
-

+

-
-+

12

Public key cryptography is expensive
– more expensive the longer the message is
– Why?

Solution
– sign digital ``fingerprint” of msg rather than msg itself

13vumanfredi@wesleyan.edu

Message digest

Desired features are what hash function gives
– fixed-length
– easy-to-compute
– 2 msgs unlikely to have same digest

Apply hash function H to m

Large
msg, m

H: Hash
Function

H(m) = msg
digest

14

Hash function properties
– many-to-1 function
– produces fixed-size msg digest, H(m)
– given message digest H(m), computationally

infeasible to find m’ such that H(m) = H(m’)

MD5 hash function (RFC 1321)
– computes 128-bit message digest in 4-step process.
– “cryptographically broken and unsuitable for further use”

• CMU Software engineering Institute

SHA-1
– 160-bit message digest
– many vulnerabilities, browsers will no longer use/accept

SHA-2, SHA-3

vumanfredi@wesleyan.edu 15

Large
msg,m

H: Hash
function H(m)

Digital
signature
(encrypt)

Alice’s
private

key K A
-

+

Alice sends digitally
signed message

Bob verifies signature,
integrity of digitally
signed msg

16

KA(H(m))-

Encrypted
msg digest

KA(H(m))-

Encrypted
msg digest

Large
msg, m

H: Hash
function

H(m)

Digital
signature
(decrypt)

H(m)

Alice’s
public

key K A
+

equal
?

Transport Layer Security

vumanfredi@wesleyan.edu 17

Secures data at and above transport layer
– provides confidentiality, integrity, authentication
– SSL: Secure Sockets Layer, predecessor to TLS
– TLS: Transport Layer Security

Available to all TCP applications
– first setup TCP connection, then run TLS as application

Widely deployed
– supported by almost all browsers, web servers
– billions $/year over SSL
– HTTP + SSL = HTTPS

vumanfredi@wesleyan.edu 18

TLS provides application programming interface to apps

Very likely your operating system using open source library
– https://www.openssl.org/
– https://firefox-source-docs.mozilla.org/security/nss/index.html

Application

TCP

IP

Normal application

Application

TLS

TCP

IP

Application with TLS

19

https://www.openssl.org/
https://firefox-source-docs.mozilla.org/security/nss/index.html

Send byte streams & interactive data
– why?

Want set of secret keys for entire connection
– why?

Want certificate exchange as part of protocol handshake phase
– why?

vumanfredi@wesleyan.edu 20

Transport Layer Security

vumanfredi@wesleyan.edu 21

Handshake
– Alice and Bob use their certificates, private keys to authenticate

each other and exchange shared secret

Key derivation
– Alice and Bob use shared secret to derive set of keys

Data transfer
– data to be transferred is broken up into series of records

Connection closure
– special messages to securely close connection

vumanfredi@wesleyan.edu 22

Derive keys from master secret
– use key derivation function (KDF)

• takes master secret and additional random data and creates keys

hello

public key certificate

KB+(MasterSecret) = EncryptedMS

vumanfredi@wesleyan.edu 23

Don’t use same key for more than one cryptographic operation
– keys for message authentication code (MAC): like hash
– keys for encryption

Encryption keys
– Kc = encryption key for data sent from client to server
– Ks = encryption key for data sent from server to client

MAC keys
– Mc = MAC key for data sent from client to server
– Ms = MAC key for data sent from server to client

24

Why not encrypt data in constant stream as we write it to TCP?
– where to put MAC?

• if at end, no message integrity until all data processed
– e.g., instant messaging

• how can we do integrity check over all bytes sent before displaying?

Solution: break stream in series of records
– each record carries MAC
– receiver can act on each record as it arrives

Length Data MAC

vumanfredi@wesleyan.edu 25

What if attacker replays or re-orders records?
– Solution: put sequence # into MAC (no seq # field)
– MAC = MAC(Mx, sequence || data)

What if attacker replays all records?
– Solution: use nonce

What if attacker forges TCP connection close?
– Solution: have record types, with one type for closure

• type 0 for data
• type 1 for closure

– MAC = MAC(Mx, sequence || type || data)

26
Length Type Data MAC

hello

certificate, nonce

KB+(MasterSecret) = EncryptedMS
type 0, seq 1, data

type 0, seq 2, data

type 0, seq 1, data

type 0, seq 3, data
type 1, seq 4, close

type 1, seq 2, close

E
nc
ry
pt
ed

bob.com

27

Transport Layer Security

vumanfredi@wesleyan.edu 28

How long are fields? Which encryption protocols? How do
client and server negotiate encryption algorithms?

TLS Handshake
– confidentiality

• client and server negotiate encryption algorithms before data transfer
– i.e., negotiate ciphersuite

• derive keys used in data exchange
– integrity

• check if handshake tampered with based on hash of handshake msgs
– authentication

• using public key and server’s certificate
• optional client authentication

vumanfredi@wesleyan.edu 29

Negotiation: client, server agree on cipher suite
– client offers choice server picks one

Which ciphersuites are supported depends on TLS version
– TLS 1.2 supports many cipher suites
– TLS 1.3 supports many fewer cipher suites

TLS_RSA_WITH_3DES_EDE_CBC_SHA
Key exchange

algorithm: public-
key

Symmetric encryption
algorithm: block cipher to

encrypt msg stream

MAC
algorithm

vumanfredi@wesleyan.edu 30

31vumanfredi@wesleyan.edu

32vumanfredi@wesleyan.edu

1. Client hello
client nonce, ciphersuites

3. Verifies certificate
generates premaster secret

4. Premaster secret
encrypted with Bob’s public key
from certificate

6. Generate symmetric keys
client nonce, server nonce,
premaster, ciphersuite

8. Client hello done
MAC of all handshake msgs
encrypted with client symmetric key

7. Encrypted data

Alice Bob

2. Server hello
server nonce, chosen
ciphersuite, RSA certificate

5. Generate symmetric keys
client nonce, server nonce,
premaster, ciphersuite

7. Server hello done
MAC of all handshake msgs
encrypted with server session keys

8. Encrypted data

è

ç

ç

ç

è

è

è 33

Protect handshake from tampering

1. Client hello
client nonce, ciphersuites

Alice Bob

2. Server hello
server nonce, chosen
ciphersuite, RSA certificate

è

ç

Suppose Trudy sniffs all messages between Alice & Bob
– next day, Trudy sets up TCP connection with Bob

• replays sequence of records
• Bob (Amazon) thinks Alice made two separate orders for same thing

Solution
– Bob sends different random nonce for each connection

• causes encryption keys to be different on the 2 days
• Trudy’s messages will fail Bob’s integrity check

vumanfredi@wesleyan.edu 34

Client nonce, server nonce, pre-master secret
– input into pseudo random-number generator to get master secret

Master secret, new nonces
– input into another random-number generator to get key block

Key block sliced and diced
– client MAC key
– server MAC key
– client encryption key
– server encryption key
– client initialization vector (IV)
– server initialization vector (IV)

vumanfredi@wesleyan.edu 35

Data

Data
fragment

Data
fragmentMAC MAC

Encrypted
data and MAC

Encrypted
data and MAC

Record
header

Record
header

Record header: content type; version; length

MAC: includes sequence number, MAC key Mx

Fragment: each SSL fragment 214 bytes (~16 Kbytes)

These records are pushed into TCP socket 36

5-37vumanfredi@wesleyan.edu

Content
type SSL version Length

MAC

Data

1 byte 2 bytes 3 bytes

Data and MAC encrypted (symmetric algorithm)

Look at TLS traffic and openssl s_client traffic

38vumanfredi@wesleyan.edu

39vumanfredi@wesleyan.edu

