Lecture 19: Distance Vector Routing

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— hw7 due next Wed.
— what’s a virtual machine?

— run the traceroute command and look at traffic in wireshark
« compare with pkts you're generating

— socket.inet_aton, socket.ntoa_inet()
 to convert string address to/from 32-bit packed address

2. Control plane
— Distance vector routing
— Link state vs. distance vector routing
— Learning to route

3. Internet Control Message Protocol (ICMP)

4. Homework 7 help: virtual machine, coding

Takeaways from last time

Global information Local/decentralized information
— global link state algorithms — decentralized distance vector algorithms
— all routers have complete — router knows only physically-connected
topology, link cost info neighbors, link costs to neighbors
— exchange info onLy about — iterative computation
neighbors but with all nodes — exchange info about all nodes but only

with neighbors

Both are used on Internet. First cover abstractly and then talk
about specific Internet protocols (OSPF, BGP, RIP, ...)

Control Plane
DISTANCE VECTOR ROUTING

Distance vector routing

Distance vector (DV)
— vector of best known costs from router to each dst and link to use

Each node x maintains
— Link cost from x to each neighbor v
¢ c(Xx,V)
— x’sown DV
* D,(y): estimate of least cost path from x to node y
* Dx=[Dxy):yeN]
— DV for each nbrv

* D,(y): estimate of least cost path from neighbor v to node y
* Dy=[Duy):yeN]

Each node periodically sends its own DV to neighbors
— rather than link state costs

Bellman-Ford equation to update DV estimates

Uses dynamic programming
— break problem into simpler sub-problems
— solve each sub-problem once and store solution

Bellman-Ford equation

D, (y) := cost of least-cost path from x to y
D.(y)=min{c(x,v)+D,y)}foreachnodey e N
Y

cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x

When x receives new DV estimate from neighbor
— X updates its own DV using B-F equation

Example: compute min cost path from u to z

Bellman-Ford equation

D,(z)=min {c(u,v) + D,z
c(u,x) + Dy(2),
c(u,w) + Dy, (2)}
=min {2 + 5,
1+ 3,
5+ 3}

),
)

Where
Du(z)=9,D,(z)=3,D,(z)=3

Node achieving minimum is next hop in shortest path
— put in forwarding table

Distance vector algorithm run at each node x

Initialization Loop
Forall dsty e N }
if y is nbr of x X waits for change in local link
D,(y) = c(Xx, y) cost or DV msg from neighbor
else l
Dy(y) = =

recompute estimates
For each nbrwand dsty e N

Dy (y) = <

Send x's DV to all nbrs w
D, =[Dx(y) 1y € N]

Dy(y) = min v {c(x,v)+D.y) }

if xX's DV to any dst has
changed, notify neighbors

Q: when does loop terminate?

Distance vector algorithm run at each node x

of nodes
Initialization Ngde x costto
Foralldsty e N g Xy z
T 02 7
if y is nbr of x S g X
O O Y] wow
else o
D,(y) = e * cost to
Y Nodey |x y z
For each nbrwand dsty e N X | © 0 oo
D,,(y) = = 5 yj2 0 1
= Z o0 o0 o @)
Send x’'s DV to all nbrs w .
_ . cost to
D, =[Du(y) :y € N] Nodez v z
= X | 00 o0 o0
2 1 g Y| o o
21710

I

Node x

cost to

cost to
Xy z

o0 o0 o0

D, (y) = min{c(x,y)+D,(y),
= min{2+0 , 7+1} 2

Node x

cost to

C(X,2)*D,(y)} Dy(z) = min{c(x,y)+Dy(z), c(x,2)+D,(2)}
=min{2+1, 7+0} =3

cost to
Xy z

o0 o0 o0

Xy z 5 1
x|02 7
Y2 0 1 7
Z|17 10
costto D,(x) =min{c(z,x)+D,(x), c(z,y)+D,(x)}
Xy Z =min{/+0, 142} =3
x|02 7
YI2 0
Z

Node x costto cost to
XYy Z XYy z
N - N .
= x(02 70 _ x{023)
g Y| oo o § Y2 0 1
Z|oooo oo Z\7 1 0
cost to
Nodey |x y z Xy z
X | 0 oo No change:
gy don’t send
- Z out DV
cost to
Node z X Yy z
X X102 7
5y Y2 0 1
Tz 2131 0

from
N <
w N

from

N <

from
N < X

cost to
Xy z

X

02 3
0 1
10

Node x

cost to

cost to
Xy z

Xy z

o0 o0 o0

No change:

don’t send
out DV

cost to
Xy z

2 7
0_1
1 0

W\N O

from

from

from

cost to
Xy z

No change:
don’t send
out DV

XV Z

No change:
don’t send
out DV

cost to
Xy z

No change:
don’t send
out DV

DONE

Good news travels fast

1. Updates routing info 1

2. Recalculates DV ? g 1
3. If DV changes, notify neighbors 20
Node detect local link cost change

t,: y detects link-cost change, updates its DV, informs its neighbors

t,. z receives update from y, updates its table, computes
new least cost to x, sends its neighbors its DV

t,: y receives z's update, updates its distance table. Y’s least
costs do not change, so y does not send a message to z

Bad news travels slow

Count to infinity problem
— 44 iterations before algorithm stabilizes

Intuitively

— when z tells y it has a path to x, y has no way of knowing that z is
using y on its path

cost to cost to
60 Yix y z YIXy z
1 x|0 4 3 x| 04 3
ﬁe Syl4a01 ™ 5 yls0 1
o0 ~ z|51 0 ~ z[510
3 min: Compute new D,(x) and D,(x) after change
Dy(x) = min{c(y,x)+D,(x), c(y,z) + D,(x)} .
= min{60+0, 1+5} = 6 Problem arises because y
— Routing Loop still expects z can get to x

D,(x) = min{c(z,x) + D,(x), c(z,y) + D,(x)} with cost of 5

= min{50+0 , 1+6} =7
=P Count-to-infinity

A proposed solution: poisoned reverse

If Z routes through Y to get to X
— Ztells Y its (Z’'s) distance to X is infinite (so Y won’t route to X via Z)

60 cost to
Y Xy z _
ﬁ1 x| 04 5 DyX)=min{c(y.x)+Dy(x), c(y.2)+D,(x)}
% £ yl40 1 = min{60+0, 1+:x} = 60
= Zlo1 O

Q: Will this completely solve count to infinity problem?
— no, only for 2 node loops

Another proposed solution: hold time
— don’t process route updates for period of time after route retraction

— ameliorates problem but does not solve

Distance vector routing summary

Easy to implement
— you will implement for hw9 :-)

Distributed
— X doesn’t compute paths in isolation
— requires route info (path costs) computed by neighbors

lterative

— X updates its DV whenever
 local link costs change
» DV update received from nbr

Asynchronous
— updates, exchanges happen asynchronously

Self-terminating
— X stops updating DV when no more changes received

Control Plane

LINK STATE VS. DISTANCE
VECTOR ROUTING

Comparison

Link state routing

— every node exchanges with every other node in network information
about its links to neighbors

— then each node runs Dijkstra’s knowing complete graph

Distance vector routing

— every node exchanges with neighbors only its distance estimates to
every other node in network

— then each node updates its distance estimates using new estimates
from neighbors, then sends its own new estimates to neighbors

Given min cost paths
— can directly compute forwarding table
— forwarding table is used by routers to find next hops for packets

— these min cost paths will need to be periodically recomputed, which
can introduce problems

Message complexity n nods
INKS

Link state

— O(nE) messages sent

» every node floods its link state message out over every link in network
to reach every node

— smaller messages sent to every node

* message size depends on the number of neighbors a node has
« any link change requires a broadcast

Distance vector

— # of messages depends on convergence time which varies
* nodes only exchange messages between neighbors

— larger messages sent only to neighbors
* message size is proportional to the number of nodes in the network
« if link changes don't affect shortest path, no message exchange

Speed of convergence n nodes
E links

Link state

-1
— X i=n(n+1)2=0(n?)
« search through n-1 nodes to find min, recompute routes
 search through n-2 nodes to find min, recompute routes

— converges quickly but may have oscillations

« route computation is centralized
« a node stores a complete view of the network

Distance vector
— slow to converge and convergence time varies
« route computation is distributed
— may be routing loops, count-to-infinity problem

What happens if router malfunctions? " ?Oﬂes

Link state
— node can advertise incorrect link cost
— each node computes only its own table

Distance vector
— DV node can advertise incorrect path cost
— each node’s DV used by others: errors propagate through network

Both have strengths and weaknesses.
One or the other is used in almost every network

Control Plane

OTHER APPROACHES TO
MAKE ROUTING DECISIONS

Reinforcement learning to make routing decisions

RL agent learns to choose actions to maximize expected future reward

State

RL Agent

>
ISt at% Q-value

Reward
Tt

Receive reward 73, ¢

i---

Transition to state Sy 4

A

Environment

@ O @

Choose
action a;

Define RL agent for routing. Requires us to define
states, actions, and rewards useful for routing

Given trained model install at routers using Software-Defined Networking

Key ideas

1.

Packet-centric
decisions

Problem: Normally a device chooses a
packet’s next hop ... but a device’s state
doesn’t track what happens to the packet

for each outgoing packet

Solution: Use packet agents to simplify

s,a,s’,r experience sequence and define
reward

Packet p; chooses its
next hop at each device

Key ideas

2. Relational features

length for packets to d, node degree, node density

* Neighbor features, fy,0ignpor (NDT(V), D, t): summarize
varying # of neighbors using min, mean, max of
fdevice (Nbr(v)» b, t)

Cth features f)q:n (V, d): distance or delay from U to dj

Problem:

Solution:

model the
instead o

6 r packet p at device v with 1-hop neighbors Nbr(v) State
* Packet features f,;cxer (P): p’s TTL eatures
* Device features f;.icc (U, d): v’s queue length, queue S (S)

Action
features

fa(a

Gacket p separately considers each action u

» device features f;.,i..(u,d),
* neighborhood features f,;,100q4(d) ,
+ device features f;.,i..(u,d)

+ context features f,,,tex:(p, u) Which indicate
thether p has recently visited u

How to define generalizable
states and actions?

Use relational features that
relationship between devices
f describing a specific device

Deep Neural Network

\@\
Q(S a) @

Compression Q

layer

Expansion layer

Internet Control Message
Protocol (ICMP)

OVERVIEW

vumanfredi@wesleyan.edu

27

Internet Control Message Protocol (ICMP)

Used by hosts & routers to
communicate network-level
information

— error reporting

* unreachable host, network,
port, protocol

— echo request/reply
« used by ping)

— network-layer above IP
* ICMP msgs carried in IP pkts

ICMP message

— type, code plus first 8 bytes of
IP pkt causing error

Type Code Description

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable

dest network unknown
dest host unknown

source quench (congestion
control - not used)

A WWWWWwWw
ONOOWN-0

8 0 echo request (ping)
9 0 route advertisement
10 O router discovery

12 0 bad IP header

Traceroute and ICMP

Source sends series of segments \When ICMP msg arrives
or packets to destination — source records RTTs
— first set has TTL =1

— second set has TTL=2, etc.

— unlikely port number Stopping criteria
TCP segment or UDP datagram

When nth set arrives to nth router eventually arrives at dst host

_router discards and sends source | " dstreturns KEMP “port
ICMP message (type 11, code 0) unreachable” message

—ICMP message includes name of " Source stops

router & IP address

q 3 probe 3 probes D
3 probe

Q: why can traceroute work with segments, datagrams, or packets?

ICMP traceroute

We're generating an ICMP echo request

Intermediate routers
— respond with ICMP TTL expired

Final destination
— responds with ICMP echo reply

