
Lecture 18: Network Layer
Link State Routing

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

Announcements
– Homework 6 due tonight by 11:59p
– Homework 7 posted, due April 22

• You will need to test your code on Linux VM, for coding part of Homework 7 can
work with a partner

Addressing
– usage in routing
– how to get an IP address

Network programming
– raw sockets and byte packing
– bit-wise operations in python

Control plane aka where routing happens
– overview
– link state routing 2

Addressing

vumanfredi@wesleyan.edu 4

Destination Address Range

11001000 00010111 00010000 00000000
through
11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through
11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through
11001000 00010111 00011111 11111111

otherwise

Link Interface

0

1

2

3
5

Forwarding table
– does not contain row for every dest IP address
– instead computes routes between subnets (blocks of addresses)

Longest prefix matching
– use longest address prefix that matches destination address

Destination Address Range
11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000 00010111 00011000 10101010

Question
DA: 11001000 00010111 00010110 10100001 which interface?

which interface?

Link interface

0

1

2

3

6

7

From http://www.cidr-report.org/as2.0/

2018

Q: If a core router processes 1million pkts+ per second,
how fast does it need to be able to search table?

Route aggregation
– combine multiple small prefixes into a single larger prefix
– allows efficient advertisement of routing information

8vumanfredi@wesleyan.edu

“Send me anything
with addresses

beginning
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses

beginning
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

“Send me anything
with addresses

beginning
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses

beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...

More specific routes
– ISPs-R-Us has a more specific route to Organization 1

9vumanfredi@wesleyan.edu

Addressing

vumanfredi@wesleyan.edu 10

ICANN
– Internet Corporation for Assigned Names and Numbers
– http://www.icann.org/

ICANN functions
– allocates addresses
– manages DNS
– assigns domain names, resolves disputes
– …

11vumanfredi@wesleyan.edu

http://www.icann.org/

Allocated portion of its provider ISP’s address space

1-12vumanfredi@wesleyan.edu

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

... ….. …. ….
Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Option 1
– hard-coded by system admin in a file on your host

Option 2:
– dynamically get address from a server

• DHCP: Dynamic Host Configuration Protocol

13vumanfredi@wesleyan.edu

Why?
– inefficient use of address space

• from pre-CIDR use of address classes (A: /8, B: /16, C: /24)
– too many networks (and devices)

• Internet comprises 100,000+ networks
• routing tables and route propagation protocols do not scale

Q: how many IPv4 addresses are there?
– 232

Solutions
– IPv6 addresses
– DHCP: Dynamic Host Configuration Protocol
– NAT: Network Address Translation

14vumanfredi@wesleyan.edu

Network Programming

vumanfredi@wesleyan.edu 15

Take bytes put into socket and push out of network interface
– no IP or transport layer headers added by operating system!

Q: why have raw sockets? Why are stream/datagram not
enough?

Lets you create your own transport and network layer headers
– set field values as you choose

• e.g., time-to-live fields

You will need to run your code on Linux VM!

16vumanfredi@wesleyan.edu

17

https://docs.python.org/3/library/socket.html

Q: why set a timeout?

18https://docs.python.org/3/library/struct.html

How do you create a
(packet) header?

Network Programming

vumanfredi@wesleyan.edu 19

x << y
– returns x with bits shifted to left by y places

• new bits on right-hand-side are zeros
• same as multiplying x by 2y

x >> y
– returns x with bits shifted to right by y places

• same as dividing x by 2y

x & y
– does a bitwise and

• each bit of output is 1 if corresponding bit of x AND of y is 1, otherwise 0

~ x
– returns complement of x

• number you get by switching each 1 for 0 and each 0 for 1

E.g.,
– use to pack ip_version and ip header length into 8 bits

20
https://wiki.python.org/moin/BitwiseOperators

https://www.tutorialspoint.com/python3/bitwise_operators_example.htm

https://wiki.python.org/moin/BitwiseOperators
https://www.tutorialspoint.com/python3/bitwise_operators_example.htm

Control Plane

vumanfredi@wesleyan.edu 21

Routing algorithm

Local forwarding table
Dest IP Output port

129.133.*.*
43.*.*.*
43.56.*.*
189.37.35.*

2
3
3
1

1
23

\

129.133.7.68

Dest IP addr in header
of arriving packet

Routing (slower time scale)
• determine route taken by packets

from source to destination
Forwarding (faster time scale)
• move packets from router’s input port

to appropriate router output port

vumanfredi@wesleyan.edu 22

Control

plane Data

plane

How to get these routes?

Goal
– determine “good” path from sending hosts to receiving host,

through network of routers

Path
– sequence of routers packets will traverse in going from given initial

source host to given final destination host

“Good”
– least “cost”, “fastest”, “least congested”, …
– correctness constraints

• no loops
• no dead-ends

v
2

2
1

3

1

1
2

5
3

5

Graph: G = (N,E)

Q: What are the routers? I.e., nodes?

Q: What are the links? I.e., edges?

u

x y

z

w

N = set of routers
= { u, v, w, x, y, z }

E = set of links
={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

c(xi,xj) = cost of link (xi,xj)
c(w,z) = 5
What is cost c(x,y)?

Q: how to set cost?
• Always 1
• Related to bandwidth
• Inversely related to congestion
• Actual cost for ISP to use link
• …

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Q: What’s the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

v
2

2
1

3

1

1
2

5
3

5

u

x y

z

w

c(u,x) + c(x,y) +c(y,z)

Global information
– global link state algorithms
– all routers have complete

topology, link cost info
– exchange info only about

neighbors but with all nodes

Local/decentralized information
– decentralized distance vector algorithms
– router knows only physically-connected

neighbors, link costs to neighbors
– iterative computation
– exchange info about all nodes but only

with neighbors

Both are used on Internet. First cover abstractly and then talk
about specific Internet protocols (OSPF, BGP, RIP, …)

v
2

2
1

3

1

1
2

5
3

5

u

x y

z

w v
2

2
1

3

1

1
2

5
3

5

u

x y

z

w

Control Plane

vumanfredi@wesleyan.edu 27

Link state: i.e., network topology, link costs
– known to all nodes, accomplished via link state broadcast

• msg about a node’s neighbors sent to every other node in network
– all nodes have same global info

Computes least cost paths
– from one “source” node to all other nodes
– obtain forwarding table for that node

Iterative
– after k iterations, know least cost path to k destinations

• if n nodes, loop n times

Given path, put 1st hop
router for each dst in

forwarding table

vumanfredi@wesleyan.edu 28

2

2
1

3 1

2

5
3

5

1

u

x

v w

z

y

Source
node

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

29

i and j are arbitrary
nodes in graph

u will be our starting
(aka source) node

k is any arbitrary node At a give node on path
to k, what is node before

that node on path?

We don’t just know a path to
these destinations, we know

definitively the least cost path.
Essentially building shortest

path tree

2

2
1

3 1

2

5
3

5

1

u

x

v w

z

y

Source
node

30

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Initialization
N' = {u}
for all nodes j

if j adjacent to u
then D(j) = c(u,j)

else D(j) = ∞

D(x),p(x)Step
0

N' D(v),p(v) D(w),p(w) D(y),p(y) D(z),p(z)

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1

u

x

v w

z

y

Source
node

31

Initialization
N' = {u}
for all nodes j

if j adjacent to u
then D(j) = c(u,j)

else D(j) = ∞

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

32

Initialization
N' = {u}
for all nodes j

if j adjacent to u
then D(j) = c(u,j)

else D(j) = ∞

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

33

ux

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

x is not in N’, and D(x) is lowest

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Now we know the lowest cost
path from u to x. Why?

Any other path from u to x must
go through neighbor of u to get
to x. But we just looked at all
neighbors of u

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

34

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Now we check whether any
neighbors of x that are not in N’
can be reached with lower cost

path by first going through x

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

35

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(v)
= min(D(v), D(x)+c(x,v))
= min(2, 1+2)

3 min: compute the updated
values of D(v), D(w), D(y)

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

2,u

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

36

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(w)
= min(D(w), D(x)+c(x,w))
= min(5, 1+3)

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

2,u 4,x

3 min: compute the updated
values of D(v), D(w), D(y)

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

37

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

x is in N’, don’t update

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

2,u 4,x

3 min: compute the updated
values of D(v), D(w), D(y)

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

38

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(y)
= min(D(y), D(x)+c(x,y))
= min(∞, 1+1)

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

2,u 4,x 2,x

3 min: compute the updated
values of D(v), D(w), D(y)

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

2

2
1

3 1

2

5
3

5

1,u

1

u

x

v w

z

y

Source
node

39

ux

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

D(z): z is not a
neighbor of x so
don’t update

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

2,u 4,x 2,x

3 min: compute the updated
values of D(v), D(w), D(y)

Now we know the lowest cost
path from u to y. Why?

Any other path from u to y must
go through neighbor of u but x is
lowest cost neighbor.

And adding on cost from x to y
still gives lower (same) cost than
even to just go to other
neighbors of u.

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

uxyvwz
uxyvw 4,y

2

2
1

3 1

2

5
3

5

4,yuxyv 3,y
3,y 4,yuxy 2,u

2,x2,u 4,x ∞ux
1,u

1

u

x

v w

z

y

Source
node

40

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Loop
Find j ∉ N' s.t. D(j) is min
Add j to N'
Update D(k) for all neighbors k ∉ N' of j

D(k) = min(D(k), D(j)+c(j,k))
Until all nodes in N'

D(x),p(x)Step
0

N' D(v),p(v)
2,u

D(w),p(w)
5,u

D(y),p(y)
∞

D(z),p(z)
∞

1
2
3
4
5

u

uxyvwz
uxyvw 4,y

4,yuxyv 3,y
3,y 4,yuxy 2,u

2,x2,u 4,x ∞ux
1,u

v
x
y
w
z

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

dst link

2. Build forwarding
table at u

2

2
1

3 1

2

5
3

1

u

x

v w

z

y

5

Source
node

1. Build shortest path
tree from predecessor

nodes

41

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Each iteration: need to check all nodes not in N’
– n in 1st iteration, n-1 in 2nd iteration, n-2 in 3rd iteration …
– n(n+1)/2 comparisons: O(n2), more efficient implementations possible

Network is dynamic
– link goes down: link state broadcast
– router goes down: remove link and all nodes recompute

Oscillations possible
– when congestion or delay-based link cost

w
z

y
x

1 1+e

e0

e
1 1

0 0

initially

w
z

y
x

x, y detect
better path to w

2+e 0

00
1+e 1

w
z

y
x

x, y, z detect
better path to w

0 2+e

1+e1
0 0

… recompute routing … recompute
Need to prevent routers
from synchronizing
computations:
Have routers randomize
when they send out link
advertisements

42

