
Lecture 12: Transport Layer
Congestion Control
COMP 332, Spring 2024

Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 5 due Thursday at 11:59p
– Midterm is Wed after break

2. Midterm overview

3. Flow control

4. Congestion causes and costs

5. TCP congestion control

2vumanfredi@wesleyan.edu

In class on Wednesday, March 27
– closed book, closed notes
– covers through whatever we get through today

• But limited questions that I will be able to ask you about congestion control
(since have not done on homework yet)

– will post practice exam

5 or 6 questions
– Application layer questions: 6-8 in total, few sentences to answer
– Transport layer questions : 6-8 in total, few sentences to answer
– Deeper question on application layer protocol: likely HTTP
– Deeper question transport layer
– Small coding check?
– Something fun?

vumanfredi@wesleyan.edu 3

TCP

vumanfredi@wesleyan.edu 4

Client, server each sends TCP segment with FIN bit = 1
– respond to received FIN with ACK (ACK can be combined with own FIN)

5

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP

vumanfredi@wesleyan.edu 7

8

Application
process

TCP socket
receiver buffers

TCP
code

IP
code

App

OS

Receiver protocol stack

Application may remove data
from TCP socket buffers ….

… slower than TCP receiver is
delivering (sender is sending)

from sender

Problem

Receiver provides feedback to sender
– so sender doesn’t overflow receiver’s buffer
– sender and receiver each maintain window

9vumanfredi@wesleyan.edu

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
Receiver-side bufferingReceiver

– rwnd: free space in RcvBuffer
– puts rwnd in TCP header of

receiver-to-sender segments

Sender
– limits unacked data to rwnd
– ensures RcvBuffer will not

overflow

10

Keeps track of available space in its RcvBuffer

11

Free space

Last byte read by
app process

rwnd

Read bytes Received bytes Received
bytes

RcvBuffer (B)

Next byte
needed

Last byte
received

rwnd = B – (last byte received – last byte read)

Limits # of in-flight segments of sender

12

No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can
send (= last byte
written by app)

Sending rate limited to: rwnd bytes/RTT seconds

Sent
bytes

Problem: if rwnd = 0, what happens?

13

No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can
send (= last byte
written by app)

No ACKs sent: receiver has no way to let sender know rwnd increased
Solution: send segments with 1 byte of data, which receiver ACKs

Congestion

vumanfredi@wesleyan.edu 14

Receive buffer is not only resource limitation
– every packet travels through path of routers
– routers may be congested, have long queues …

Causes of network congestion
– many senders compete for network resources
– senders lack knowledge

• amount of resources available (bandwidth)
• # of other senders competing

vumanfredi@wesleyan.edu 15

Problem
– retransmission treats symptoms but not underlying problem

Q: how to solve underlying problem of congestion?
– reduce sending rate … but what should sending rate be?

• depends on available bandwidth
• sender increases/decreases sending rate based on congestion level

16vumanfredi@wesleyan.edu

Bad feedback
loop!

As queues in bottleneck
link fill up: large packet
delays, dropped packets

As timeouts expire at sender
due to delays/drops:
packets retransmitted

1. Hosts: divide data to send
into fixed-length packets

17

www.google.com
Host 2

Host 1
2. Routers: interleave
packets from different
hosts on links

vumanfredi@wesleyan.edu

No retransmission, 2 senders, 2 receivers

18

Infinite buffers:
unlimited shared
output link buffers

Throughput: lout

Output link capacity: R

Max per-
connection

throughput: R/2

R/2

R/2

l o
ut

lin R/2

de
la

y

lin

Large delays as
arrival rate, lin,

approaches
capacity

No loss

Q: Why R/2?

Host AOriginal data: lin

Host B

Even though high
throughput when close to
capacity, also high delay!

Sender retransmits timed-out packet
– lin = lout: app-layer input equals app-layer output
– l’in ≥ lin: transport-layer input includes retransmissions

19

Finite buffers:
limited shared

output link buffers

Host AOriginal data: lin

Host B

Throughput: lout

Output link capacity: R
Loss

Retransmitted +
original data:
l'in

Performance depends on how retransmission performed…

Idealization: perfect knowledge
– sender sends only when router buffers available
– no loss occurs, so l’in = lin

20

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

R/2

R/2

l o
ut

lin

Copy

lout

lin

Idealization: known loss
– packets can be lost, dropped at

router due to full buffers
– only resend packet known to be lost

21

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

Realistic: duplicates
– packets can be lost, dropped at

router due to full buffers
– sender times out prematurely

• sends 2 copies, both delivered

22

Finite buffers

Output link
capacity: R

l'in

Free buffer
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

timeout

TCP

vumanfredi@wesleyan.edu 23

1. Discover available bandwidth
– how much bandwidth can be used without causing congestion

• will vary over time
– estimate starting from no information

2. Correctly set sending rate
– should not exceed available bandwidth

3. Fairness
– no user gets all of the bandwidth

24vumanfredi@wesleyan.edu

Sender limits transmission

cwnd is dynamic, function of
perceived network congestion

TCP sending rate
– roughly

• send cwnd bytes
• wait RTT for ACKs
• send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwndLastByteSent-LastByteAcked < cwnd
sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

vumanfredi@wesleyan.edu 25

Q: How does sender
estimate cwnd?

Detect congestion
– delays

• large RTTs: too variable to be used in practice

– duplicate ACKs
• isolated loss

– timer expired
• multiple losses

How to intuitively adjust cwnd
– ACK received: increase cwnd
– loss detected: decrease cwnd

26vumanfredi@wesleyan.edu

Use to adjust cwnd,
affecting sending rate

Goal: send segments, adjust cwnd as needed

1. Slow start
– determine available bandwidth starting from no info

2. Congestion avoidance
– deal with fluctuations in bandwidth

3. Fast recovery
– quickly recover from isolated lost packets

We’ll first look at different states, then full FSM

27vumanfredi@wesleyan.edu

Initial rate is “slow”
– relative to original TCP which

had no congestion control
– initially cwnd = 1 MSS

Ramp up exponentially fast
– every time ACK received

• cwnd = cwnd + MSS
– essentially doubles cwnd

every RTT

28

Host A

one segment

R
TT

Host B

time

two segments

four segments

vumanfredi@wesleyan.edu

Additive Increase Multiplicative Decrease (AIMD)
– probe cautiously for usable bandwidth
– additive increase

• cautious: increase cwnd by 1 MSS every RTT until loss detected
– multiplicative decrease

• aggressive: cut cwnd in half after loss

c
w
n
d AIMD saw tooth

behavior: probing
for bandwidth

additively increase window size …
…. until loss occurs, then cut window in half

time 29

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retxmt missing segment

L
cwnd > ssthresh

Congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
txmt new segment(s), as allowed

new ACK .

dupACKcount++
dup ACK

Fast
recovery

cwnd = cwnd + MSS
txmt new segment(s), as allowed

dup ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retxmt missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retxmt missing segment ssthresh= cwnd/2

cwnd = ssthresh+3MSS
retxmt missing segment

dupACKcount == 3
cwnd = ssthresh

dupACKcount = 0

New ACK

Slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retxmt missing segment

cwnd = cwnd+MSS
dupACKcount = 0
txmt new segment(s), as
allowed

new ACK

dupACKcount++
dup ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

30

