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1. Announcements
– homework 5 due Thursday at 11:59p
– Midterm is Wed after break

2. Midterm overview

3. Flow control

4. Congestion causes and costs

5. TCP congestion control
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In class on Wednesday, March 27
– closed book, closed notes
– covers through whatever we get through today

• But limited questions that I will be able to ask you about congestion control 
(since have not done on homework yet)

– will post practice exam

5 or 6 questions
– Application layer questions: 6-8 in total, few sentences to answer
– Transport layer questions : 6-8 in total, few sentences to answer
– Deeper question on application layer protocol: likely HTTP
– Deeper question transport layer
– Small coding check?
– Something fun?
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Client, server each sends TCP segment with FIN bit = 1
– respond to received FIN with ACK (ACK can be combined with own FIN)
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB
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Application
process

TCP socket
receiver buffers

TCP
code

IP
code

App

OS

Receiver protocol stack

Application may remove data 
from TCP socket buffers …. 

… slower than TCP  receiver is 
delivering (sender is sending)

from sender

Problem



Receiver provides feedback to sender
– so sender doesn’t overflow receiver’s buffer
– sender and receiver each maintain window
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buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
Receiver-side bufferingReceiver

– rwnd: free space in RcvBuffer
– puts rwnd in TCP header of 

receiver-to-sender segments

Sender 
– limits unacked data to rwnd
– ensures RcvBuffer will not 

overflow
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Keeps track of available space in its RcvBuffer
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Free space

Last byte read by 
app process

rwnd

Read bytes Received bytes Received 
bytes

RcvBuffer (B)

Next byte 
needed

Last byte 
received

rwnd = B – (last byte received – last byte read)



Limits # of in-flight segments of sender
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No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can 
send (= last byte 
written by app) 

Sending rate limited to: rwnd bytes/RTT seconds

Sent 
bytes



Problem: if rwnd = 0, what happens?
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No data

rwnd

ACK’d
bytes

SendBuffer (B)

1st unACK’d
byte

Last byte can 
send (= last byte 
written by app) 

No ACKs sent: receiver has no way to let sender know rwnd increased
Solution: send segments with 1 byte of data, which receiver ACKs
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Receive buffer is not only resource limitation
– every packet travels through path of routers
– routers may be congested, have long queues …

Causes of network congestion
– many senders compete for network resources
– senders lack knowledge 

• amount of resources available (bandwidth)
• # of other senders competing
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Problem
– retransmission treats symptoms but not underlying problem

Q: how to solve underlying problem of congestion?
– reduce sending rate … but what should sending rate be?

• depends on available bandwidth
• sender increases/decreases sending rate based on congestion level
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Bad feedback 
loop!

As queues in bottleneck 
link fill up: large packet 
delays, dropped packets

As timeouts expire at sender 
due to delays/drops:      
packets retransmitted



1. Hosts: divide data to send 
into fixed-length packets
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www.google.com
Host 2

Host 1
2. Routers: interleave 
packets from different 
hosts on links 
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No retransmission, 2 senders, 2 receivers
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Infinite buffers:
unlimited shared 
output link buffers

Throughput: lout

Output link capacity: R

Max per-
connection 

throughput: R/2

R/2

R/2

l o
ut

lin R/2

de
la

y

lin

Large delays as 
arrival rate, lin, 

approaches 
capacity

No loss

Q: Why R/2?

Host AOriginal data: lin

Host B

Even though high 
throughput when close to 
capacity, also high delay!



Sender retransmits timed-out packet
– lin = lout: app-layer input equals app-layer output
– l’in ≥ lin: transport-layer input includes retransmissions
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Finite buffers:
limited shared 

output link buffers

Host AOriginal data: lin

Host B

Throughput: lout

Output link capacity: R
Loss

Retransmitted + 
original data:
l'in

Performance depends on how retransmission performed…



Idealization: perfect knowledge
– sender sends only when router buffers available
– no loss occurs, so l’in = lin
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Finite buffers

Output link 
capacity: R

l'in

Free buffer 
space

R/2

R/2

l o
ut

lin

Copy

lout

lin



Idealization: known loss
– packets can be lost, dropped at 

router due to full buffers
– only resend packet known to be lost
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Finite buffers

Output link 
capacity: R

l'in

Free buffer 
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput
is still R/2 (why?)



Realistic: duplicates 
– packets can be lost, dropped at 

router due to full buffers
– sender times out prematurely

• sends 2 copies, both delivered
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Finite buffers

Output link 
capacity: R

l'in

Free buffer 
space

Copy

lout

lin

R/2

R/2lin

l o
ut

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput
is still R/2 (why?)

timeout
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1. Discover available bandwidth 
– how much bandwidth can be used without causing congestion

• will vary over time
– estimate starting from no information

2. Correctly set sending rate 
– should not exceed available bandwidth

3. Fairness
– no user gets all of the bandwidth
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Sender limits transmission

cwnd is dynamic, function of           
perceived network congestion

TCP sending rate
– roughly

• send cwnd bytes
• wait RTT for ACKs
• send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte 
sent

cwndLastByteSent-LastByteAcked < cwnd
sender sequence number space 

rate ~~
cwnd
RTT

bytes/sec
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Q: How does sender 
estimate cwnd?



Detect congestion
– delays

• large RTTs: too variable to be used in practice

– duplicate ACKs
• isolated loss

– timer expired
• multiple losses

How to intuitively adjust cwnd
– ACK received: increase cwnd
– loss detected: decrease cwnd
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Use to adjust cwnd,
affecting sending rate



Goal: send segments, adjust cwnd as needed

1. Slow start
– determine available bandwidth starting from no info

2. Congestion avoidance
– deal with fluctuations in bandwidth

3. Fast recovery
– quickly recover from isolated lost packets

We’ll first look at different states, then full FSM
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Initial rate is “slow”
– relative to original TCP which 

had no congestion control
– initially cwnd = 1 MSS

Ramp up exponentially fast
– every time ACK received

• cwnd = cwnd + MSS
– essentially doubles cwnd

every RTT

28

Host A

one segment

R
TT

Host B

time

two segments

four segments
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Additive Increase Multiplicative Decrease (AIMD)
– probe cautiously for usable bandwidth
– additive increase

• cautious: increase cwnd by 1 MSS every RTT until loss detected
– multiplicative decrease 

• aggressive: cut cwnd in half after loss

c
w
n
d AIMD saw tooth

behavior: probing
for bandwidth

additively increase window size …
…. until loss occurs, then cut window in half

time 29



timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retxmt missing segment

L
cwnd > ssthresh

Congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
txmt new segment(s), as allowed

new ACK .

dupACKcount++
dup ACK

Fast
recovery 

cwnd = cwnd + MSS
txmt new segment(s), as allowed

dup ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retxmt missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retxmt missing segment ssthresh= cwnd/2

cwnd = ssthresh+3MSS
retxmt missing segment

dupACKcount == 3
cwnd = ssthresh

dupACKcount = 0

New ACK

Slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retxmt missing segment

cwnd = cwnd+MSS
dupACKcount = 0
txmt new segment(s), as 
allowed

new ACK

dupACKcount++
dup ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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