Lecture 11: Transport Layer
TCP again

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

Announcements
— homework 5 due Thursday at 11:59p
— Midterm is Wed after break (will talk more next class)

TCP
— overview
— reliable data transfer
— seq #s and ack #s
— timeouts
— reliable data transport
— connection management

TCP
OVERVIEW

Transmission Control Protocol (TCP) .o, 55ia2s

2018, 2581

Main transport protocol used in Internet, provides

mux/dmux: which packets go where

connection-oriented, point-to-point
» 2 hosts set up connection before exchanging data, tear down after
* bidirectional data flow (full duplex)

flow control: don’t overwhelm receiver

congestion control: don’t overwhelm network

reliable: resends lost packets, checks for and corrects errors
in-order: buffers data until sequential chunk to pass up

byte stream: no msg boundaries, data treated as stream

Sender Receiver

Send Receive
data data

How does TCP provide these services?

Using many techniques we already talked about

Sliding window
— congestion and flow control determine window size
— seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
— only one retransmission timer
* intuitively, associate with oldest unACKed packet

— timeout period
» estimated from observations

— fast retransmit
» 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!

TCP segment structure

32 bits

A

v

URG: urgent data
0 source port #

(generally not used)\ | dest port #
ACK: ACK # . sequence number

valid \o@owledgement number

head
PSH: push data now on |us usgd E—IEJ,RSF receive window

(generally not used) — Urg data pointer

RST, SYN, FIN:_— opﬂ(variable length)

connection estab

(setup, teardown
commands) S
application

Internet/ data
(variable length)

checksum
(as in UDP)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Q: Why both seq #

and ack #? Could be
both sending data and
acking received data

\

No. Time Source Destination
i 42 4.878920 172.217.11.10 vmanfredismbp2.wireless.wesleyan.edu
44 4.879137 outlook-namnortheast2.offi.. vmanfredismbp2.wireless.wesleyan.edu
46 4.879346 vmanfredismbp2.wireless.we.. outlook—-namnortheast2.office365.com

‘ A=y A NN~ e A M A AN AT EikeR SR B L e A

» Internet Protocol Version 4, Src: outlook-namnortheast2.office365.com (40.97.120.226), Dst: \
v Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52232 (52232), Seq: 0, Ack: 1,
Source Port: 443
Destination Port: 52232
[Stream index: 0]
[TCP Segment Len: 0]
Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes
© Flags: 0x012 (SYN, ACK)

000. = Reserved: Not set
«2a® = Nonce: Not set
. 0... = Congestion Window Reduced (CWR): Not set
ssss a0.. .uu. = ECN-Echo: Not set
sses 2:@. = Urgent: Not set
.1 = Acknowledgment: Set

« 0... = Push: Not set
.0.. = Reset: Not set
> e Syn: Set
rsss sass 220 = Fin: Not set
[TCP Flags: sekkkkkkAxkSxk]
Window size value: 8190
[Calculated window size: 8190]
» Checksum: @xcb80 [validation disabled]
Urgent pointer: 0

» Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation
. [RFN/ACK analucicl

78 4f 43 73 43 26 3c 8a b0 le 18 01 08 00 45 20 XOCsC&<. vvsnus E

0010 00 34 32 41 40 00 eb 06 7e eb 28 61 78 e2 81 85 A ZB@ ua 5 DN o

| 0020 bb ae @1 bb cc 88 a9 a2 4d d9 59 5a 86 d8 80 12 M.YZ....
| 0030 1f fe cb 80 00 00 02 04 05 50 01 03 03 04 01 01uus P

04 02

Transmission Control Protocol, Src Port: 443, Dst Port: 49153, Seq: 2238481842, Ack: 4200288574, Len: 0
Source Port: 443
Destination Port: 49153
[Stream index: 8]
[TCP Segment Len: 0]
Sequence number: 2238481842
Acknowledgment number: 4200288574

1000 = Header Length: 32 bytes (8)
Flags: 0x010 (ACK)
000. = Reserved: Not set
«:® = Nonce: Not set
. = Congestion Window Reduced (CWR): Not set
«0.. = ECN-Echo: Not set
«:0. = Urgent: Not set
..1 = Acknowledgment: Set

« 0... = Push: Not set
.0.. = Reset: Not set
..0. = Syn: Not set
wmmn mmum: sl = FANE NoOE set
[TCP Flags: ««-+--- Aeeee]
Window size value: 501
[Calculated window size: 501]
[Window size scaling factor: -1 (unknown)]
Checksum: 0x766d [unverified]
[Checksum Status: Unverified]
Urgent pointer: 0
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
[SEQ/ACK analysis]

TCP
SEQ #S AND ACK #S

TCP seq. numbers, ACKs

Sequence #s

— byte stream # of first byte
iIn segment’s data

Acknowledgements

— seq # of next byte
expected from other side

— cumulative ACK

Q: how does receiver handle
out-of-order segments?

— TCP spec doesn’t say

— up to implementer

Outgoing segment
from sender

source port # | dest port #

sequence number g

acknowledgement number
| | rwnd

checksum

urg pointer

wmdow size

sender SE'C]UE’/?CE num er space

A
sent sent not- usable not
ACKed yet ACKed butnot usable

(“in-flight”) yet sent

Incoming segment to sender
dest port #
sequence number

lll acknowledgement number
rwnd

checksum

source port #

urg pointer

TCP ACKs

Cumulative ACKs (but different than in Go-Back-N)

— ACKs what receiver expects next, not last packet received
 implicitly also ACKs everything up to sequence number received

— only 1 retransmission timer (for first pkt in window)
» sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

. send_base
Initial Sequence _ gy 4 | Next_seq_num

Number (ISN)

k bytes - wmdow Size
Sent + Sent + not- usable not

ACKed yet ACKed but not ~usable
(“in-flight”) yet sent

TCP seq. numbers, ACKs

Sequence numbers are synchronized during connection set-up

Host A Host B
Lastseq# | !V : Last seq #
sent: 41 =& . sent: 78
User types ‘C’ —

Seq=42, ACK=79, data = ‘C’
d\:b Host ACKs receipt of ‘C’,
echoes back ‘C’
— ('C'is 1 byte long)
Host ACK - Seq=79, ACK=43, data = ‘C’
0s S recelp
of echoed ‘C’ A/
\
Seq=43, ACK=K

Simple nc scenario

Host 1 Host 2

- Transmission Control Protocol,
Source Port: 54573

Destination Port: 443 Transmission Control Protocol, Src

[Stream index: 2 Source Port: 443 .
Handshake: [TCP Segmen \ Destination Port: 54573 C;Jr?(;/?:rl]:\llotr;kiY’lN
Synchronize Sequence number:<.59452065 [Stream index: 2]

ISNs Acknowledgment number [TCP Segmeng byte of seq #
3712814908 > °SPace

Header Length: Sequence number
» Flags: 0x002 (SYN Acknowledgment number
Window size value: 65535 Header Length: 4@ bytes
» Flags: 0x@12 (SYN, ACK)
Window size value: 14480

Ul bt el bl L L Transmission Control Protocol, Src Pc
Source Port: 54573

g S T Source Port: 443
estina }0" ort: \ Destination Port: 54573
[Stream index: 2]

[Stream index:
Data [TCP Segmen [TCP Segment

exchange Sequence number:(59452066 Sequence number:
[Next sequence number: 59452278]

Acknowledgment number:(59452278
Acknowledgment number: (3712814909 Header Length @
S e

wind : lue: 4122 Window size value: 122
e [Calculated window size: 15616]

What are seq and ack #s in next [Window size scaling factor: 128]
segment from receiver?

13

Segment size

Max length of IP packet in bytes
— MTU: Maximum Transmission Unit
— 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes

— MSS: Maximum Segment Size

— MSS = MTU = IP hdr— TCP hdr
» TCP header >= 20bytes

|P data

TCP segment sent when

IPhdr TCP hdr TCP data either it is full (meets
MSS) or not full but

timeout occurs

|
IP pkt

14

TCP
TIMEOUTS

TCP timeout

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
— but RTT varies

Too short

— premature timeout
— unnecessary retransmissions

Too long
— slow reaction to segment loss

How to estimate RTT

SampleRTT

— time from segment transmission to ACK reception

— ignore retransmissions
* since problems associating retransmitted ACK with right pkt
 will vary: use average of several measurements

— exponential weighted moving average of sampleRTTs
— influence of past sample decreases exponentially fast
— typical value: o = 0.125

= (1-a)* + a*SampleRTT

Variation in RTT

350
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

—

V) .

O 300

=

8 \

8 . 1 T I fl M

£

~ 200

n: ¢ sampleRTT
EstimatedRTT

100

1 8 1‘5 2‘2 2‘9 :‘56 4‘13 5;(1 57 £34 ‘71 7‘8 6;5 E;Z 59 1‘06
time
(seconds)

Q: How to handle variation in RTT?

— timeout interval should be 2
* because of variation of RTT values
* large variation in = larger safety margin

Handling variation in RTT

Estimate SampleRTT deviation from EstimatedRTT

DevRTT = (1-B)*DevRTT + B*|SampleRTT-Estimated R T T]
(typically, B = 0.25)

Timeoutinterval = EstimatedRTT + 4*DeV|TTT

“safety margin”
If timeout occurs: timeout interval doubled to prevent
premature timeout for subsequent segments

TCP
RELIABLE DATA TRANSFER

TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service
— pipelined segments
— cumulative acks
— single retransmission timer

Retransmissions triggered by

— timeout events
— duplicate ACKs

Let’s initially consider simplified TCP sender
— ignore duplicate acks
— ignore flow control, congestion control

TCP sender (simplified)

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

a . start timer
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y R_etransmlt first segment .
window, restart timer
if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

: If acks previously unacked segments,
}else stop timer update what is known to be ACKed,

start timer if still unacked segments

TCP: retransmission scenarios

Host A H B

0S
w \uli
e ——
Start timer for
oldest

unacked
segment

-

\
Seq=92, 8 bytes of data

5
o
Q
E
\

Seq=92, 8 bytes of data

/

ACK=100

/

lost ACK scenario

—

-
ACK=100
ol

Host A Hos
- \u
03%
Ao

SendBase=92

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

——timeout ——

Seq=92, 8

SendBase=100 bytes of data\‘

SendBase=120

\

ACK=120

\

SendBase=120

premature timeout

o

TCP: retransmission scenarios

Host A Host B
w \ull
> g

\
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of da

ACK=100
X«

ACK=120

\h

e——— timeout

Seq=120, 15 bytes of data

\.L

cumulative ACK

Duplicate ACKs

Time-out period often relatively long
— long delay before resending lost packet

Duplicate ACKs indicate isolated loss
— rather than congestion causing many losses
» sender often sends many segments back-to-back

 if segment is lost, likely many duplicate ACKs

» ACKs being received indicates some packets received at destination
since ACK sent for every packet: so not congestion

TCP fast retransmit

— if sender receives 3 ACKs for same data (triple duplicate ACKSs)
» resend unacked segment with smallest seq #

— Q: why 3?
« pkts may just have been reordered otherwise
* likely that unacked segment lost, so don’t wait for timeout

TCP fast retransmit

Host A Host B
g !
R s

send_base = 92 F = geq=92, 8 bytes of data

\seq=100w
\X

l

Q

Restart timer, i
send _base = 100

L

]

e

Fast retransmit

v v

fast retransmit after sender
receipt of triple duplicate ACK

TCP
CONNECTION MANAGEMENT

Connection Management

Before exchanging data, sender/receiver handshake
— establish connection and connection parameters

— tear down connection when done

application

[T 1
[al_ln |
connection state: ESTAB
Client connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at server,client

N/ network

sock = sock.connect((host, port))

application

[T 1
[al_lm |
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

network Eﬂ

conn, addr = server_sock.accept()

Server

Agreeing to establish a connection

Q: will 2-way handshake
always work in network?

1~ Let’ s talk — variable delays
OK __P$ESTAB — retransmitted messages
ESTAB & « e.g. req_conn(x)) due to

message loss
— message reordering

C[E — can’t see other side
o

® ESTAB

2-way handshake failure scenarios

%’I/

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(&L‘

A ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

forgets x

ESTAB

half open connection!

(no client!)

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

_cIient
terminates

<

%,/

\req_conn(m
/

acc_conn(x)

\data(x+ 1)\»
N\

connection

~ 7 x completes

\
reg_conn(Xx)

N

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

TCP 3-way handshake

client state L/ E server state
LISTEN e LISTEN

choose init seq num, x

send TCP SYN msg |

SYNSENT SYNbit=1, Seg=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x-+1

v received SYNACK(x)
indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain | ACKhit=1, ACKnum=y+1

client-to-server data
T, [received ACK(Y)

indicates client is live v
ESTAB

/\

TCP 3-way handshake: FSM

closed

A

SYN(x)

SYNACK(seq=y,ACKnum=x+1) —~
create new socket for @ SYN(seq=x)

communication back to client

| !

‘ SYNACK(seq=y,ACKnum=x+1)
>
ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Look at the state of tcp connections

> netstat -ta

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 Y @ vmanfredismbp2.w.55777 1ga25s60-in-f5.1.https ESTABLISHED
tcp4 3 vmanfredismbp2.w.55736 162.125.34.6.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55717 al104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55716 al104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55715 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55714 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55713 a104-110-151-148.https ESTABLISHED
tcp4 vmanfredismbp2.w.55668 wesfiles.wesleya.http CLOSE_WAIT
tcp4 vmanfredismbp2.w.55486 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55322 162.125.18.133.https ESTABLISHED
tcp4 vmanfredismbp2.w.55250 162.125.4.3.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55170 ec2-52-20-75-192.https CLOSE_WAIT
tcp4 vmanfredismbp2.w.55072 85.97.201.35.bc..https ESTABLISHED
tcp4 localhost.ipp B LISTEN

tcpb localhost.ipp HLF LISTEN

tcp4 vmanfredismbp2.w. 6.97.a86¢.1p4.st.https ESTABLISHED

= X2 T T =T =TS = === =

1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

SIS IO IO IR OSBGOSR O IIGCS BGOSR S BIGS B OSI ON

TCP: politely closing a connection

Client, server each sends TCP segment with FIN bit = 1
— respond to received FIN with ACK (ACK can be combined with own FIN)

client state
ESTAB

/
‘«\I/

clientSocket.close()

FIN_WAIT_1

FIN_WAIT_2

TIMED_WAIT

CLOSED

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

|

 Fbit=1
It=1, SeQ:X\‘

ACKbit=1; ACKnum=x+1
&

FINbit=1, seq=y

\
ACKbit=1; ACKnum=y+1

\

server state
ESTAB

CLOSE_WAIT
can still
send data

LAST ACK

can no longer
send data

CLOSED

FIN segment in Wireshark

| 241 4.063493 vmanfredismbp2. wireless.we.. 40.97. 120. 226 54 55017 - 443 [FI

~an A_Aannnna A NN NAN ANN Cr PR Dy T By 1 L g PR T D AAaN~ [Y e T Ve

» Frame 241: 54 bytes on wire (432 bits), 54 bytes captured (432 b1ts) on interface 0
» Ethernet II, Src: 78:4f:43:73:43:26 (78:4f:43:73:43:26), Dst: 129.133.176.1 (3c:8a:b0:1e:18:01)
» Internet Protocol Version 4, Src: vmanfredismbp2.wireless.wesleyan.edu (129.133.187.174), Dst: 40.97.120.226 (40.97.1.
©~ Transmission Control Protocol, Src Port: 55017 (55017), Dst Port: 443 (443), Seq: 3771, Ack: 6504, Len: 0
Source Port: 55017
Destination Port: 443
[Stream index: 5]
[TCP Segment Len: @]
Sequence number: 3771 (relative sequence number)
Acknowledgment number: 6504 (relative ack number)
Header Length: 20 bytes
© Flags: 0x011 (FIN, ACK)
000. = Reserved: Not set
«+:@ = Nonce: Not set
« = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
«+0. = Urgent: Not set
«+1 = Acknowledgment: Set
«+» 0... = Push: Not set
«v:s +0.. = Reset: Not set
. vaes 220, = Syn: Not set
M oo cooo oood = [FilnE SEE
[TCP Flags: sckkkkskokAsokkF]
Window size value: 8192
[Calculated window size: 262144]
[Window size scaling factor: 32]
» Checksum: 0xe59d [validation disabled]

Il mnmd wnonmsnd s

3c 8a b0 1e 18 01 78 4f 43 73 43 26 08 00 45 00 <..... x0 CsCé&..E.
00 28 76 59 40 00 40 06 e5 ff 81 85 bb ae 28 61 .(VY@.@. ..uuu: (a
78 e2 d6 e9 01 bb dd 11 e8 4a b@® 93 7d 29 50 11 X.ivuuwuss «J..})P.
20 006 e59d @000 i

