
Lecture 11: Transport Layer
TCP again

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

Announcements
– homework 5 due Thursday at 11:59p
– Midterm is Wed after break (will talk more next class)

TCP
– overview
– reliable data transfer
– seq #s and ack #s
– timeouts
– reliable data transport
– connection management

2

TCP

vumanfredi@wesleyan.edu 3

Main transport protocol used in Internet, provides
– mux/dmux: which packets go where
– connection-oriented, point-to-point

• 2 hosts set up connection before exchanging data, tear down after
• bidirectional data flow (full duplex)

– flow control: don’t overwhelm receiver
– congestion control: don’t overwhelm network
– reliable: resends lost packets, checks for and corrects errors
– in-order: buffers data until sequential chunk to pass up
– byte stream: no msg boundaries, data treated as stream

4

Sender Receiver

Network
Send
data

Receive
data

RFCs:
793,1122,1323,

2018, 2581

Using many techniques we already talked about

Sliding window
– congestion and flow control determine window size
– seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
– only one retransmission timer

• intuitively, associate with oldest unACKed packet
– timeout period

• estimated from observations
– fast retransmit

• 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!
5

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Q: Why both seq #
and ack #? Could be

both sending data and
acking received data

vumanfredi@wesleyan.edu 6

7vumanfredi@wesleyan.edu

8vumanfredi@wesleyan.edu

TCP

vumanfredi@wesleyan.edu 9

Sequence #s
– byte stream # of first byte

in segment’s data

Acknowledgements
– seq # of next byte

expected from other side
– cumulative ACK

Q: how does receiver handle
out-of-order segments?

– TCP spec doesn’t say
– up to implementer source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

Incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

Outgoing segment
from sender

10

Cumulative ACKs (but different than in Go-Back-N)
– ACKs what receiver expects next, not last packet received

• implicitly also ACKs everything up to sequence number received
– only 1 retransmission timer (for first pkt in window)

• sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

11

Initial Sequence
Number (ISN)

Sent +
ACKed

Sent + not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

send_base
= ISN + k next_seq_num

k bytes

User types ‘C’

Host ACKs receipt
of echoed ‘C’

Host ACKs receipt of ‘C’,
echoes back ‘C’
(’C’ is 1 byte long)

Simple nc scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

vumanfredi@wesleyan.edu 12

Last seq #
sent: 41

Last seq #
sent: 78

Sequence numbers are synchronized during connection set-up

13
What are seq and ack #s in next

segment from receiver?

Host 2Host 1

Convention: SYN
and FIN take 1
byte of seq #

space

Handshake:
Synchronize

ISNs

Data
exchange

Max length of IP packet in bytes
– MTU: Maximum Transmission Unit
– 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes
– MSS: Maximum Segment Size
– MSS = MTU – IP hdr – TCP hdr

• TCP header >= 20bytes

14

TCP data

IP pkt

TCP segment sent when
either it is full (meets
MSS) or not full but

timeout occurs

TCP hdrIP hdr

IP data

TCP

vumanfredi@wesleyan.edu 15

Q: how to set TCP timeout value?

Longer than RTT (ideally proportional)
– but RTT varies ….

Too short
– premature timeout
– unnecessary retransmissions

Too long
– slow reaction to segment loss

vumanfredi@wesleyan.edu 16

SampleRTT
– time from segment transmission to ACK reception
– ignore retransmissions

• since problems associating retransmitted ACK with right pkt
• will vary: use average of several measurements

EstimatedRTT
– exponential weighted moving average of sampleRTTs
– influence of past sample decreases exponentially fast
– typical value: a = 0.125

17

EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

Q: How to handle variation in RTT?
– timeout interval should be ≥ EstimatedRTT

• because of variation of RTT values
• large variation in EstimatedRTT ⇒ larger safety margin

18

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

RT
T

(m
ill

is
ec

on
ds

)
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time
(seconds)

Estimate SampleRTT deviation from EstimatedRTT

19

DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|
(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

“safety margin”

If timeout occurs: timeout interval doubled to prevent
premature timeout for subsequent segments

TCP

vumanfredi@wesleyan.edu 20

TCP creates rdt service on top of IP’s unreliable service
– pipelined segments
– cumulative acks
– single retransmission timer

Retransmissions triggered by
– timeout events
– duplicate ACKs

Let’s initially consider simplified TCP sender
– ignore duplicate acks
– ignore flow control, congestion control

vumanfredi@wesleyan.edu 21

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

22

Seq # is byte-stream # of first
data byte in segment. Timer is
for oldest unacked segment

Retransmit first segment in
window, restart timer

If acks previously unacked segments,
update what is known to be ACKed,
start timer if still unacked segments

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

23

Start timer for
oldest

unacked
segment

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

vumanfredi@wesleyan.edu 24

Time-out period often relatively long
– long delay before resending lost packet

Duplicate ACKs indicate isolated loss
– rather than congestion causing many losses

• sender often sends many segments back-to-back
• if segment is lost, likely many duplicate ACKs
• ACKs being received indicates some packets received at destination

since ACK sent for every packet: so not congestion

TCP fast retransmit
– if sender receives 3 ACKs for same data (triple duplicate ACKs)

• resend unacked segment with smallest seq #
– Q: why 3?

• pkts may just have been reordered otherwise
• likely that unacked segment lost, so don’t wait for timeout 25

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100
tim

eo
ut

ACK=100

ACK=100
ACK=100

1-26

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

tim
eo

ut

send_base = 92

Restart timer,
send_base = 100

Fast retransmit

TCP

vumanfredi@wesleyan.edu 27

Before exchanging data, sender/receiver handshake
– establish connection and connection parameters
– tear down connection when done

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

vumanfredi@wesleyan.edu 28

sock = sock.connect((host, port)) conn, addr = server_sock.accept()

Client Server

Q: will 2-way handshake
always work in network?

– variable delays
– retransmitted messages

• e.g. req_conn(x)) due to
message loss

– message reordering
– can’t see other side

29vumanfredi@wesleyan.edu

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB acc_conn(x)

30

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB
acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

vumanfredi@wesleyan.edu 31

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

SYN(seq=x)

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)
L

vumanfredi@wesleyan.edu 32

sock =
sock.connect((host, port))

conn, addr =
server_sock.accept()

33vumanfredi@wesleyan.edu

Client, server each sends TCP segment with FIN bit = 1
– respond to received FIN with ACK (ACK can be combined with own FIN)

34

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

