Lecture 10: Transport Layer
Reliable Data Transfer and Seq #s

COMP 332, Spring 2024
Victoria Manfredi

WESLEYAN
U N | V E I T Y

3
R §
*

.
‘dl-

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

Announcements
— homework 4 due Thursday, 11:59p

Recap

— reliable data transport over channels with errors and loss

Pipelined protocols
— go-back-N
— selective repeat
— sequence numbers in practice

TCP overview

Reliable Data Transport
REVIEW

Summary of techniques and uses

Channel problems Protocol solutions

[Checksum

Acknowledgements
Corrupted packets — " — Sequence ﬁs

Retransmissions and buffering

—

Duplicate packets \
/{Seq #s

Reordered packets

(haven't talked about reordering yet)

Delayed packets \ [Timeouts and timers
4 Acknowledgements

__—" | Retransmissions and buffering

—

Dropped packets

Will see: # of seq #s must be > 2x window size if reordering

Are we done?

Have we solved reliable communication over an
unreliable channel?

vumanfredi@wesleyan.edu

Reliable Data Transport
PIPELINED PROTOCOLS

rdt3.0: stop-and-wait operation

sender receiver
1st packet bit transmitted, t =0 _
last packet bit transmitted, t =L/ R

1st packet bit arrives
—last packet bit arrives,
send ACK

RTT

ACK arrives, send nexiy
packet, t=RTT + L /R\

v
Time spent sending stuff
L/R 008
U — - == —
sender™ T 17~ 30008 0.00027
Total time

Problem: how to maintain high link utilization?

Get rid of stop-and wait

Use pipelining (aka sliding-window protocols), like in HTTP

— sender allows multiple, in-flight, yet-to-be-acknowledged pkts
» send up to N packets at a time, unacked
* range of seq #s must be increased
» sender needs more memory to buffer outstanding unacked packets

{c

data pqcke’r—» f data packets—» "

<+— ACK packets

Stop and wait Pipelined

Achieves higher link utilization than stop-and-wait!

Increased utilization with pipelining

3-packet pipelining sender

1st packet bit transmitted, t = 0 _—
last bit transmitted, t = L/ R g

RTT

ACK arrives, send next v
packet, t=RTT+L/R _

Time spent sending stuff

U _ 3L/R
sender R7T+ L/R

Total time

receiver

1st pkt bit arrives

—last pkt bit arrives, send ACK

—last bit of 2nd pkt arrives, send ACK
—last bit of 34 pkt arrives, send ACK

3-packet pipelining
increases utilization by
factor of 3!

0.00081

Pipelined protocols

Send N packets without receiving ACKs. How to ACK now?

Cumulative ACKs: Go-Back-N protocol

— sender
» has timer for oldest unacked pkt
* when timer expires: retransmit all unacked pkts
* pkts received correctly may be retransmitted

— receiver only sends cumulative ack, doesn’t ack pkt if gap

Selective ACKs: Selective Repeat protocol

— sender
 has timer for each unacked pki
* when timer expires, retransmit only unacked pkt
 only corrupted/lost pkts are retransmitted

— receiver sends individual ack for each pkt

k What is window size on stop
and wait protocol?

How pipelining protocols wor

Use sliding window

— how sender keeps track of what it can send

— window: set of N adjacent seq #s
« only send packets in window

send_ base nexfseqnum already I usable, not

ack’ed yet sent

||||||\ T OI000 | sovnptea [ot osce

wmdow size

If window large enough, will fully utilize link

Pipelined Protocols
GO-BACK-N

Go-Back-N: sender

Window of up to N consecutive unacked pkts allowed

— ACK(n) is cumulative ACK
» ACKs all pkts up to, including seq # n
* may receive duplicate ACKs (see receiver)
— timer for oldest in-flight pkt
 timeout(n): retransmit packet n and all higher seq # pkts in window

send_base nexfseqgnum Ea— I
i i ack’ed yet sent
0L T 2 e
* __ window size —2%

N

Go-Back-N: sender FSM

rdt_send(data) Send as long as pkt

if (nextseqnum < base+N) { within window
sndpkt[nextseqgnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextsegnum++
}
~~~~~~ else refuse_data(data)
i A1 ........ Resend up to
ase=1 T
nextseqnum=1 . C R i eout nexts_eqnum on
4 start_timer timeout
udt_send(sndpkt[base])
Ignore corrupt Ca udt_send(sndpkt[base+1])
rdt_rcv(rcvpkt) && corrupt(rcvpkt) U
udt_send(sndpkt[nextseqnum-1])
A rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)

stop_timer Cumulative ack: move

else
start timer base to ack# + 1



Go-Back-N: receiver FSM

Out-of-order pkt and all other cases Correct pkt with highest in-order seq #
— discard: no receiver buffering! — send ACK, may be duplicate ACK
— re-ACK pkt with highest in-order seq # — need only remember expectedseqnum
\ default
udt_send(sndpkt) rdt_rcv(rcvpkt)
O && notcorrupt(rcvpkt)

_______ && hassegnum(rcvpkt,expectedseqgnum)
A - = "Q extract(rcvpkt,data)
expectedseqgnum=1 deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)  sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqgnum++

Retransmit windowsize worth of packets for 1 error
large window size = large delays



Go-Back-N in action

send pkt0
send pktl \

\X loss

sender window (N=4) sender
5678
5678
EPEY: 5678 send pkt2-
5678 send pkt3
(wait)
okEEY¥ 678 rcv ackO, send pkt4
o 1EEE¥¥ 78 rcv ackl, send pkt5
ignore duplicate ACK
DKt 2 timeout
K12 3 4 5 W send pkt2
0 1 RN 7 8 send pkt3
Rl 2 34 5 F& send pkt4
0 1EEYE 7 8 send pkt5

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, discard,
(re)send ackl

receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4

=
\
=

rcv pkt5, deliver, send ack5



Go-Back-N summary

Pros

— no receiver buffering
* saves resources by requiring packets to arrive in-order
 avoids large bursts of packet delivery to higher layers

— simpler buffering & protocol processing
» can easily detect duplicates if out-of-sequence packet is received

cons

— wastes capacity

» on timeout for packet N sender retransmits from N all over again (all
outstanding packets) including potentially correctly received packets

Tradeoff: buffering/processing complexity vs. capacity
(time vs. space)



Pipelined Protocols
SELECTIVE REPEAT



Selective repeat

Rather than ACK cumulatively, ACKs selectively

Receliver
— individually ACKs all correctly received pkts
— buffers pkts, as needed, for eventual in-order delivery to upper layer

Sender
— only resends pkts for which ACK not received
— sender timer for each unACKed pkt

Sender window
— N consecutive seq #s
— limits seq #s of sent, unACKed pkts



Selective repeat: sender, receiver windows

send_base nextsegnum

adlready usable, not
| ack’ed yet sent

sent, not

HHHWHHH”H”H”" "ﬂ'“”“””] H yet ack'ed ﬂ not usable
I wEndow size —4
A
Sender view of seq #s

out of order acceptable

(buffered) but Ty :
dreadyeck od (within window)

III]IIIIIIIIIIIIIIHIIHIIIIIIIIIII]III] (e [

t _ window size—4

1 N

rcv_base

Receiver view of seq #s



Selective repeat sender

data from above

if has next available seq # in window, send packet, start
timer

timeout(n)
resend packet n, restart timer

ACK(n) in [sendbase, sendbase + N]

* mark packet n as received

 if nis smallest unACKed packet
— advance window base to next unACKed seq #



Selective repeat receiver
pkt n in [rcvbase, rcvbase+N-1]

« send ACK(n)

 out-of-order
— buffer

 in-order
— deliver (also deliver buffered, in-order pkts)
— advance window to next not-yet-received pkt

pkt n in [rcvbase-N, rcvbase-1]
send ACK(n)

otherwise
ignore



Selective repeat in action

sender window (N=4) sender recelver

5678 send pkt0

5678 send pkt]_ \ .

5678 send pkt2 receive pkt0, send ack0

5678 send pkt3 | X /oss receive pkt1, send ackil
[ ] (wait)

1] 1 2 3 4 LA rcv ack0, send pkt4
0 1EEYEK 7 8 rcv ackl, send pkt5

receive pkt3, buffer, send ack3

receive pkt4, buffer, send ack4

‘record ack3 arrived receive pkt5, buffer, send ack5
Pkt 2 timeout |
0 12EEEK 7 8 send pkt2
0 1-6 345 W& .
0 1EERNDs 7 record ack4 arrl.ve receive pkt2
0 1EFYERG 7 8 record ack5 arrived / deliver pkt2, pkt3, pkt4, pkt5
send ack?2

Q: what happens
when ack?2 arrives?




Selective repeat: dilemma

Example
— seq#s: 0,1, 2, 3 and window size=3

sender window receiver window
(after receipt) (after receipt)

(ERA3 0 12—Rk0

OERA3012 Rkl OEIPEE]0 12

PEBA3 0 1 2 —pkt2 70112
“—lll=> o + Exm>
01 2 3 KW

!

—»  will accept packet
with seq number 0

kt
X
0112}E/

No problem...



Selective repeat: dilemma

Example
— seq#s: 0,1, 2, 3 and window size=3
sender window receiver window

(after receipt) (after receipt)

K3 0 1 2—D2K0
IEWF3012-pktl o 0 12
[0 1 2 kYK ~Dkt2? 01 12
0 1 2EXK 2

XA/

|

— will accept packet
with seq number 0

Problem: duplicate data accepted as new:
receiver sees no difference in two scenarios!

timeout, retransmit pktO 'l

K3 0 1 2—RK0

Q: what is relationship between seq # size and
window size to avoid problem in (b)?



Selective repeat summary

Q: When is selective repeat useful?
When channel generates errors frequently

Pros

— more efficient capacity use
 only retransmit missing packets

cons

— receiver buffering
 to store out-of-order packets

— more complicated buffering & protocol processing
 to keep track of missing out-of-order packets

Tradeoff again between buffering/processing
complexity and capacity



Sequence numbers
HOW USED IN PRACTICE



Sequence #s in practice

How large must seq # space be?
— depends on window size

Example
— seq # space = [0, 24-1]
— window size = 8
Window
Sender: [01234567/01234567

Acks not received, times out and retransmits seq #0-7

Receiver: 01234567(01234567
\ J

| Receiver willing to accept seq #0-7
Acks sent Sender sending seq# 0-7 but different packets!

Solution: seq # space must be large enough to cover both sender
+ receiver windows. l.e., >= 2x window size



Sequence #s in practice

What are they counting?

— bytes, not packets
« sending packets but counting bytes
* SO seq #s do not increase incrementally

Sequence # space
— finite
* e.g., 32 bits so 0 to 232-1 values
* must wrap around to O when hit max seq #

— TCP initial seq # is randomly chosen from space of values
 security (harder to spoof)
 to prevent confusing segments from different connections
« different operating systems set differently: can fingerprint machines



TCP
OVERVIEW



Transmission Control Protocol (TCP) .o, 55ia2s

2018, 2581

Main transport protocol used in Internet, provides

mux/dmux: which packets go where

connection-oriented, point-to-point
» 2 hosts set up connection before exchanging data, tear down after
* bidirectional data flow (full duplex)

flow control: don’t overwhelm receiver

congestion control: don’t overwhelm network

reliable: resends lost packets, checks for and corrects errors
in-order: buffers data until sequential chunk to pass up

byte stream: no msg boundaries, data treated as stream

Sender Receiver

Send Receive
data data




How does TCP provide these services?

Using many techniques we already talked about

Sliding window
— congestion and flow control determine window size
— seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
— only one retransmission timer
* intuitively, associate with oldest unACKed packet

— timeout period
» estimated from observations

— fast retransmit
» 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!



TCP segment structure

32 bits

A

v

URG: urgent data
0 source port #

(generally not used)\ | dest port #
ACK: ACK # . sequence number

valid \o@owledgement number

head
PSH: push data now on |us usgd E—IEJ,RSF receive window

(generally not used) — Urg data pointer

RST, SYN, FIN:_— opﬂ( variable length)

connection estab

(setup, teardown
commands) S
application

Internet/ data
(variable length)

checksum
(as in UDP)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Q: Why both seq #

and ack #? Could be
both sending data and
acking received data



\

No. Time Source Destination
i 42 4.878920 172.217.11.10 vmanfredismbp2.wireless.wesleyan.edu
44 4.879137 outlook-namnortheast2.offi.. vmanfredismbp2.wireless.wesleyan.edu
46 4.879346 vmanfredismbp2.wireless.we.. outlook—-namnortheast2.office365.com

‘ A=y A NN~ e A M A AN AT EikeR SR B L e A

» Internet Protocol Version 4, Src: outlook-namnortheast2.office365.com (40.97.120.226), Dst: \
v Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52232 (52232), Seq: 0, Ack: 1,
Source Port: 443
Destination Port: 52232
[Stream index: 0]
[TCP Segment Len: 0]
Sequence number: @ (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes
© Flags: 0x012 (SYN, ACK)

000. .... .... = Reserved: Not set
«2a® .... .... = Nonce: Not set
. 0... .... = Congestion Window Reduced (CWR): Not set
ssss a0.. .uu. = ECN-Echo: Not set
sses 2:@. .... = Urgent: Not set
.1 .... = Acknowledgment: Set

« 0... = Push: Not set
.0.. = Reset: Not set
> e Syn: Set
rsss sass 220 = Fin: Not set
[TCP Flags: sekkkkkkAxkSxk]
Window size value: 8190
[Calculated window size: 8190]
» Checksum: @xcb80 [validation disabled]
Urgent pointer: 0

» Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation
. [RFN/ACK analucicl

78 4f 43 73 43 26 3c 8a b0 le 18 01 08 00 45 20 XOCsC&<. vvsnus E

0010 00 34 32 41 40 00 eb 06 7e eb 28 61 78 e2 81 85 A ZB@ ua 5 DN o

| 0020 bb ae @1 bb cc 88 a9 a2 4d d9 59 5a 86 d8 80 12 ........ M.YZ....
| 0030 1f fe cb 80 00 00 02 04 05 50 01 03 03 04 01 01 .....uus P

04 02



TCP
SEQ #S AND ACK #S



TCP seq. numbers, ACKs

Sequence #s

— byte stream # of first byte
iIn segment’s data

Acknowledgements

— seq # of next byte
expected from other side

— cumulative ACK

Q: how does receiver handle
out-of-order segments?

— TCP spec doesn’t say

— up to implementer

Outgoing segment
from sender

source port # | dest port #

sequence number g

acknowledgement number
| | rwnd

checksum

urg pointer

wmdow size

sender SE'C]UE’/?CE num er space

A
sent sent not- usable not
ACKed yet ACKed butnot usable

(“in-flight”) yet sent

Incoming segment to sender
dest port #
sequence number

lll acknowledgement number
rwnd

checksum

source port #

urg pointer




TCP ACKs

Cumulative ACKs (but different than in Go-Back-N)

— ACKs what receiver expects next, not last packet received
 implicitly also ACKs everything up to sequence number received

— only 1 retransmission timer (for first pkt in window)
» sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

. send_base
Initial Sequence  _ gy 4 | Next_seq_num

Number (ISN)

k bytes - wmdow Size
Sent + Sent + not- usable not

ACKed yet ACKed but not ~usable
(“in-flight”) yet sent



TCP seq. numbers, ACKs

Sequence numbers are synchronized during connection set-up

Host A Host B
Lastseq# | !V : Last seq #
sent: 41 =& . sent: 78
User types ‘C’ —

Seq=42, ACK=79, data = ‘C’
d\:b Host ACKs receipt of ‘C’,
echoes back ‘C’
— ('C'is 1 byte long)
Host ACK - Seq=79, ACK=43, data = ‘C’
0s S recelp
of echoed ‘C’ A/
\
Seq=43, ACK=K

Simple nc scenario



Host 1 Host 2

- Transmission Control Protocol,
Source Port: 54573

Destination Port: 443 Transmission Control Protocol, Src

[Stream index: 2 Source Port: 443 .
Handshake: [TCP Segmen \ Destination Port: 54573 C;Jr?(;/?:rl]:\llotr;kiY’lN
Synchronize Sequence number:<.59452065 [Stream index: 2]

ISNs  Acknowledgment number [TCP Segmeng byte of seq #
3712814908 > °SPace

Header Length: Sequence number
» Flags: 0x002 (SYN Acknowledgment number
Window size value: 65535 Header Length: 4@ bytes
» Flags: 0x@12 (SYN, ACK)
Window size value: 14480

Ul bt el bl L L Transmission Control Protocol, Src Pc
Source Port: 54573

g S T Source Port: 443
estina }0" ort: \ Destination Port: 54573
[Stream index: 2]

[Stream index:
Data  [TCP Segmen [TCP Segment

exchange Sequence number:( 59452066 Sequence number:
[Next sequence number: 59452278]

Acknowledgment number:(59452278
Acknowledgment number: (3712814909 Header Length @
S e

wind : lue: 4122 Window size value: 122
e [Calculated window size: 15616]

What are seq and ack #s in next [Window size scaling factor: 128]
segment from receiver?

39



Segment size

Max length of IP packet in bytes
— MTU: Maximum Transmission Unit
— 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes

— MSS: Maximum Segment Size

— MSS = MTU = IP hdr— TCP hdr
» TCP header >= 20bytes

|P data

TCP segment sent when

IPhdr  TCP hdr TCP data either it is full (meets
MSS) or not full but

timeout occurs

|
IP pkt

40



