
Lecture 10: Transport Layer
Reliable Data Transfer and Seq #s

COMP 332, Spring 2024
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

Announcements
– homework 4 due Thursday, 11:59p

Recap
– reliable data transport over channels with errors and loss

Pipelined protocols
– go-back-N
– selective repeat
– sequence numbers in practice

TCP overview

2vumanfredi@wesleyan.edu

Reliable Data Transport

vumanfredi@wesleyan.edu 3

Channel problems

Corrupted packets

Duplicate packets

Reordered packets

Delayed packets

Dropped packets

4vumanfredi@wesleyan.edu

Checksum
Acknowledgements
Sequence #s
Retransmissions and buffering

Seq #s

Timeouts and timers
Acknowledgements
Retransmissions and buffering

Protocol solutions

Will see: # of seq #s must be > 2x window size if reordering

(haven’t talked about reordering yet)

Have we solved reliable communication over an
unreliable channel?

5vumanfredi@wesleyan.edu

Reliable Data Transport

vumanfredi@wesleyan.edu 6

1st packet bit transmitted, t = 0
sender receiver

RTT

last packet bit transmitted, t = L / R

1st packet bit arrives
last packet bit arrives,
send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Problem: how to maintain high link utilization? 7

Time spent sending stuff

Total time

Use pipelining (aka sliding-window protocols), like in HTTP
– sender allows multiple, in-flight, yet-to-be-acknowledged pkts

• send up to N packets at a time, unacked
• range of seq #s must be increased
• sender needs more memory to buffer outstanding unacked packets

Achieves higher link utilization than stop-and-wait!
8

Stop and wait Pipelined

9

1st packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

1st pkt bit arrives
last pkt bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd pkt arrives, send ACK
last bit of 3rd pkt arrives, send ACK

3-packet pipelining
increases utilization by

factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

3-packet pipelining

Time spent sending stuff

Total time

Send N packets without receiving ACKs. How to ACK now?

Cumulative ACKs: Go-Back-N protocol
– sender

• has timer for oldest unacked pkt
• when timer expires: retransmit all unacked pkts
• pkts received correctly may be retransmitted

– receiver only sends cumulative ack, doesn’t ack pkt if gap

Selective ACKs: Selective Repeat protocol
– sender

• has timer for each unacked pkt
• when timer expires, retransmit only unacked pkt
• only corrupted/lost pkts are retransmitted

– receiver sends individual ack for each pkt

10vumanfredi@wesleyan.edu

Use sliding window
– how sender keeps track of what it can send
– window: set of N adjacent seq #s

• only send packets in window

If window large enough, will fully utilize link

11vumanfredi@wesleyan.edu

What is window size on stop
and wait protocol?

Pipelined Protocols

vumanfredi@wesleyan.edu 12

Window of up to N consecutive unacked pkts allowed
– ACK(n) is cumulative ACK

• ACKs all pkts up to, including seq # n
• may receive duplicate ACKs (see receiver)

– timer for oldest in-flight pkt
• timeout(n): retransmit packet n and all higher seq # pkts in window

13

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)
if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++

}
else refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

L

14

Resend up to
nextseqnum on

timeout

L

Ignore corrupt

Send as long as pkt
within window

Cumulative ack: move
base to ack# + 1

Out-of-order pkt and all other cases
– discard: no receiver buffering!
– re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt = make_pkt(expectedseqnum,ACK,chksum)

L

15

Retransmit windowsize worth of packets for 1 error
large window size ⇒ large delays

Correct pkt with highest in-order seq #
– send ACK, may be duplicate ACK
– need only remember expectedseqnum

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

X loss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Pros
– no receiver buffering

• saves resources by requiring packets to arrive in-order
• avoids large bursts of packet delivery to higher layers

– simpler buffering & protocol processing
• can easily detect duplicates if out-of-sequence packet is received

Cons
– wastes capacity

• on timeout for packet N sender retransmits from N all over again (all
outstanding packets) including potentially correctly received packets

Tradeoff: buffering/processing complexity vs. capacity
(time vs. space)

17vumanfredi@wesleyan.edu

Pipelined Protocols

vumanfredi@wesleyan.edu 18

Rather than ACK cumulatively, ACKs selectively

Receiver
– individually ACKs all correctly received pkts
– buffers pkts, as needed, for eventual in-order delivery to upper layer

Sender
– only resends pkts for which ACK not received
– sender timer for each unACKed pkt

Sender window
– N consecutive seq #s
– limits seq #s of sent, unACKed pkts

vumanfredi@wesleyan.edu 19

20

Sender view of seq #s

Receiver view of seq #s

Event: data from above
– action: if has next available seq # in window, send packet, start

timer

Event: timeout(n)
– action: resend packet n, restart timer

Event: ACK(n) in [sendbase, sendbase + N]
– action

• mark packet n as received
• if n is smallest unACKed packet

– advance window base to next unACKed seq #

21vumanfredi@wesleyan.edu

Event: pkt n in [rcvbase, rcvbase+N-1]
– action:

• send ACK(n)
• out-of-order

– buffer
• in-order

– deliver (also deliver buffered, in-order pkts)
– advance window to next not-yet-received pkt

Event: pkt n in [rcvbase-N, rcvbase-1]
– action: send ACK(n)

Event: otherwise
– action: ignore

22vumanfredi@wesleyan.edu

23

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, send ack3

rcv ack0, send pkt4
rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X loss

receive pkt4, buffer, send ack4

receive pkt5, buffer, send ack5

receive pkt2
deliver pkt2, pkt3, pkt4, pkt5
send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q: what happens
when ack2 arrives?

Example
– seq #’s: 0, 1, 2, 3 and window size=3

24

receiver window
(after receipt)

sender window
(after receipt)

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

No problem…

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

Example
– seq #’s: 0, 1, 2, 3 and window size=3

25

0 1 2 3 0 1 2 pkt0
pkt1
pkt2

pkt0timeout, retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2X

X
X

will accept packet
with seq number 0

Q: what is relationship between seq # size and
window size to avoid problem in (b)?

receiver window
(after receipt)

sender window
(after receipt)

Problem: duplicate data accepted as new:
receiver sees no difference in two scenarios!

0 1 2 3 0 1 2
0 1 2 3 0 1 2

0 1 2 3 0 1 2

Pros
– more efficient capacity use

• only retransmit missing packets

Cons
– receiver buffering

• to store out-of-order packets
– more complicated buffering & protocol processing

• to keep track of missing out-of-order packets

Tradeoff again between buffering/processing
complexity and capacity

vumanfredi@wesleyan.edu 26

Q: When is selective repeat useful?
When channel generates errors frequently

Sequence numbers

vumanfredi@wesleyan.edu 27

How large must seq # space be?
– depends on window size

Example
– seq # space = [0, 24-1]
– window size = 8

Sender: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Receiver: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

28

Window

Acks not received, times out and retransmits seq #0-7

Receiver willing to accept seq #0-7
Sender sending seq# 0-7 but different packets! Acks sent

Solution: seq # space must be large enough to cover both sender
+ receiver windows. I.e., >= 2x window size

What are they counting?
– bytes, not packets

• sending packets but counting bytes
• so seq #s do not increase incrementally

Sequence # space
– finite

• e.g., 32 bits so 0 to 232-1 values
• must wrap around to 0 when hit max seq #

– TCP initial seq # is randomly chosen from space of values
• security (harder to spoof)
• to prevent confusing segments from different connections
• different operating systems set differently: can fingerprint machines

29vumanfredi@wesleyan.edu

TCP

vumanfredi@wesleyan.edu 30

Main transport protocol used in Internet, provides
– mux/dmux: which packets go where
– connection-oriented, point-to-point

• 2 hosts set up connection before exchanging data, tear down after
• bidirectional data flow (full duplex)

– flow control: don’t overwhelm receiver
– congestion control: don’t overwhelm network
– reliable: resends lost packets, checks for and corrects errors
– in-order: buffers data until sequential chunk to pass up
– byte stream: no msg boundaries, data treated as stream

31

Sender Receiver

Network
Send
data

Receive
data

RFCs:
793,1122,1323,

2018, 2581

Using many techniques we already talked about

Sliding window
– congestion and flow control determine window size
– seq #s are byte offsets

Cumulative ACKs but does not drop out-of-order packets
– only one retransmission timer

• intuitively, associate with oldest unACKed packet
– timeout period

• estimated from observations
– fast retransmit

• 3 duplicate ACKs trigger early retransmit

TCP is not perfect but works pretty well!
32

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not

used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Q: Why both seq #
and ack #? Could be

both sending data and
acking received data

vumanfredi@wesleyan.edu 33

34vumanfredi@wesleyan.edu

TCP

vumanfredi@wesleyan.edu 35

Sequence #s
– byte stream # of first byte

in segment’s data

Acknowledgements
– seq # of next byte

expected from other side
– cumulative ACK

Q: how does receiver handle
out-of-order segments?

– TCP spec doesn’t say
– up to implementer source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

Incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

Outgoing segment
from sender

36

Cumulative ACKs (but different than in Go-Back-N)
– ACKs what receiver expects next, not last packet received

• implicitly also ACKs everything up to sequence number received
– only 1 retransmission timer (for first pkt in window)

• sender retransmits only first pkt in window if no ack when timer expires

Sequence #s are not sequential: counting bytes not packets

37

Initial Sequence
Number (ISN)

Sent +
ACKed

Sent + not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

send_base
= ISN + k next_seq_num

k bytes

User types ‘C’

Host ACKs receipt
of echoed ‘C’

Host ACKs receipt of ‘C’,
echoes back ‘C’
(’C’ is 1 byte long)

Simple nc scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

vumanfredi@wesleyan.edu 38

Last seq #
sent: 41

Last seq #
sent: 78

Sequence numbers are synchronized during connection set-up

39
What are seq and ack #s in next

segment from receiver?

Host 2Host 1

Convention: SYN
and FIN take 1
byte of seq #

space

Handshake:
Synchronize

ISNs

Data
exchange

Max length of IP packet in bytes
– MTU: Maximum Transmission Unit
– 1500 bytes if Ethernet used as link layer protocol

Max length of TCP data in bytes
– MSS: Maximum Segment Size
– MSS = MTU – IP hdr – TCP hdr

• TCP header >= 20bytes

40

TCP data

IP pkt

TCP segment sent when
either it is full (meets
MSS) or not full but

timeout occurs

TCP hdrIP hdr

IP data

