
Lecture 6: Application Layer
HTTP Protocol and Web proxies

COMP 332, Spring 2023
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University and some material

from Computer Networks by Tannenbaum and Wetherall.

Announcements
– homework 2 due tonight, homework 3 posted

Web and HTTP
– non-persistent vs. persistent connections
– request and response messages
– web caching

• homework 3 and 4 will implement a version of this

2vumanfredi@wesleyan.edu

Network Applications

vumanfredi@wesleyan.edu 3

HTTP
– HyperText Transfer Protocol

Client/server model
– client

• browser that requests,
receives, (using HTTP
protocol) and “displays”
Web objects

– server
• Web server sends (using

HTTP protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

4vumanfredi@wesleyan.edu

1. Initiate TCP
connection

2. Request file

3. File received

time time

syn

syn/ack

HTTP req

HTTP resp

fin

fin/ack4. Connection
closed

5vumanfredi@wesleyan.edu

When you click on a link
1. client initiates TCP connection

– creates socket to server on port 80
2. server accepts TCP connection

from client
3. HTTP messages exchanged

between browser (HTTP client)
and Web server (HTTP server)

4. TCP connection closed

Two types of HTTP messages
– request, response

Stateless
– server maintains no information about past client requests

Why stateless?
– stateful protocols are complex

• storage
– state must be maintained for potentially many clients

• server/client crashes
– views of state may be inconsistent, must be reconciled

• workaround: cookies

6vumanfredi@wesleyan.edu

Web page consists of objects
– object can be HTML file, JPEG image,

Java applet, audio file,…
– typically includes base HTML-file and

several referenced objects

Each object is addressable by URL, e.g.,

www.someschool.edu/someDept/pic.jpg

host name path

2. pic.jpg
3. HWK.pdf

1. index.html

All 3 objects must be
requested from server in

order to fully load webpage

object

Q: How do we download multiple objects using HTTP?
7vumanfredi@wesleyan.edu

HTTP Protocol

vumanfredi@wesleyan.edu 8

1. Non-persistent HTTP
– at most one object sent over

TCP connection
• connection then closed

– for each object, setup and use
separate TCP connection

• downloading multiple objects
requires multiple connections

– HTTP/1.0

2 ways to use HTTP requests to get objects
from web server

2. Persistent HTTP
– multiple objects can be sent

over single TCP connection
between client, server

– reuse same TCP connection
to download multiple objects

– HTTP/1.1: by default

9vumanfredi@wesleyan.edu

Round-trip-time (RTT)
– time for small packet to travel

from client to server and back

HTTP response time
– 1 RTT

• to initiate TCP connection
– 1 RTT

• for HTTP req and first few
bytes of HTTP resp to return

– file transmission time

Time to
transmit

file

Initiate TCP
connection

RTT

Request file

RTT

File
received

time time

10

Delay and resource usage
– requires 2 RTTs + file tx time per object
– OS must work and allocate host resources for each TCP connection
– browsers often open parallel TCP connections to fetch objects

Server leaves connection open after sending response
– subsequent HTTP messages sent over open connection
– client sends requests as soon as it encounters referenced object

Persistent without pipelining
– client issues new request only when previous response received
– 1 RTT for each referenced object

Persistent with pipelining
– client issues new request as soon as it encounters referenced object
– as little as 1 RTT for all referenced objects
– default in HTTP/1.1

11vumanfredi@wesleyan.edu

12

Without pipelining With pipelining

Initiate TCP
connection

RTT

Request
index.html

RTT

time time

Close
connection

RTT

Request
hwk.pdf

RTT

RTT

RTT

time time

Close
connection

RTT

Time to
transmit

file

Delay: 4RTT + 3DTrans Delay: 3RTT + 2DTrans

RTT

Request
pic.jpg

Initiate TCP
connection

RTT

Request
index.html

Request hwk.pdf
Request pic.jpg

HTTP Protocol

vumanfredi@wesleyan.edu 13

ASCII (human-readable format)

Request line
(GET, POST,

HEAD commands)

Header lines

Carriage return,
line feed at start
of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Mozilla/5.0\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Persistent
connection

14

Q: What info can server use to fingerprint you, without
even using cookies?

request
line

header
lines

body

method sp sp cr lfversionURL
cr lfvalueheader field name

valueheader field name

~~ ~~

entity body~~ ~~

cr lf

valueheader field name cr lf

cr lf

15vumanfredi@wesleyan.edu

POST method
– web page often includes form input
– input is uploaded to server in entity body

URL method
– uses GET method
– input is uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeys&banana

16vumanfredi@wesleyan.edu

Status line
(protocol

status code
status phrase)

Header
lines

Data, e.g.,
requested

HTML file (may
be split across
multiple pkts

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

Use to determine
end of message

17vumanfredi@wesleyan.edu

Status code
– appears in 1st line in server-to-client response message.

Some sample codes
– 200 OK

• request succeeded, requested object later in this msg
– 301 Moved Permanently

• requested object moved, new location specified later in this msg
(Location:)

– 400 Bad Request
• request msg not understood by server

– 404 Not Found
• requested document not found on this server

– 500 Server error
– 505 HTTP Version Not Supported

18vumanfredi@wesleyan.edu

From https://medium.com/@hanilim/http-
codes-as-valentines-day-comics-

8c03c805faa0

19

20vumanfredi@wesleyan.edu

https://en.wikipedia.org/wiki/HTTP_451

1. Open tcp connection using netcat:

Opens TCP connection to port 80
(default HTTP server port) at w.edu.
Anything typed in will be sent to port

80 at www.eepurl.com

nc www.eepurl.com 80

2. Type in a GET HTTP request:

GET / HTTP/1.1
Host: www.eepurl.com

By typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

21vumanfredi@wesleyan.edu

Need to type sufficiently quickly so that tcp connection doesn’t time out

HTTP/1.1 so connection stays open, doesn’t close right away, and can enter additional requests

Be a TCP server: listen for connections on port 51234
– nc -l 51234

Be a TCP client: connect to port 51234 on locahost
– nc localhost 51234
– type a string and press enter: you should see it show up at server
– type a string at server and press enter: you should see it at client

Look at connections you created
– netstat | grep 51234

Create a chat app with nc:
– nc -l 5000 on one machine with ip addr x
– nc x 5000 on another machine

vumanfredi@wesleyan.edu

HTTP Protocol

vumanfredi@wesleyan.edu 23

Goal
– satisfy client request

without (really) involving
origin server

How?
– user sets browser to

perform web accesses
via cache

24vumanfredi@wesleyan.edu

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Browser sends all HTTP requests to cache
– if object in cache

• cache returns object
– else

• cache requests object from origin server, then returns object to client

Cache acts as both client and server
– server for original requesting client
– client to origin server

Typically cache installed by ISP
– university, company, residential ISP

Q: why use web caching?
– reduce response time for client request
– reduce traffic on institution’s access link
– reduce load on origin servers
– Internet dense with caches

• enables “poor” content providers to effectively deliver content (so too
does P2P file sharing)

25vumanfredi@wesleyan.edu

LAN utilization: 1.5Mbps/1Gbps = 0.15%, assume ~ µsec
Access link utilization: 1.50/1.51 = 99%
Total delay = LAN delay + access delay + Internet delay

= µsec + minutes + 2s
26

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.51 Mbps
access link rate

RTT from institutional
router to any server: 2s

Avg req rate from browsers to
servers: 15 req/s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

Grows exponentially…

27vumanfredi@wesleyan.edu

problem!
min

sec
ms

Utilization
100%

Delay

Why 99% access link utilization is bad!
What can we do?

LAN utilization: 1.5Mbps/1Gbps = 0.15%, assume ~ µsec
Access link utilization: 1.50/151 = 0.9%
Total delay = LAN delay + access delay + Internet delay

= µsec + ms + 2s
28

origin
servers

public
Internet

institutional
network

1 Gbps LAN
151 Mbps

access link rate

RTT from institutional
router to any server: 2s

But, increasing
access link rate is

expensive!

Avg req rate from browsers to
servers: 15 req/s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

29

local web
cache

How to compute access link utilization and delay?
Web cache is cheap!

origin
servers

public
Internet

institutional
network

1 Gbps LAN
1.51 Mbps

access link rate

RTT from institutional
router to any server: 2s

Avg req rate from browsers to
servers: 15 req/s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

Assume cache hit rate is 0.4
– 40% of requests satisfied at cache
– 60% of requests satisfied at server
– thus, 60% of requests use access link

local web
cache

origin
servers

public
Internet

institutional
network

1 Gbps LAN
1.51 Mbps

access link rate

RTT from institutional
router to any server: 2s

Avg req rate from browsers to
servers: 15 req/s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

Data rate to browsers over access link
– 0.6 x 1.50 Mbps = 0.9 Mbps

Access link utilization
– 0.9 Mbps /1.51 Mbps = 60%

Assume access delay: ~700 msec

local web
cache

origin
servers

public
Internet

institutional
network

1 Gbps LAN
1.51 Mbps

access link rate

RTT from institutional
router to any server: 2s

Avg req rate from browsers to
servers: 15 req/s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

Total delay
= 0.6 x (delay when satisfied by servers) + 0.4 x (delay when satisfied by cache)
= 0.6 x (LAN delay + access delay + Internet delay) + 0.4 x (LAN delay)
= 0.6 (µsec + 700 msec + 2 sec) + 0.4 (µsec)
= 0.6 (2.7 sec) + 0.4 (µsec) = ~1.6 sec

Goal
– don’t send object if cache has

up-to-date version
– no object transmission delay
– lower link utilization

Cache
– specify date of cached copy in

HTTP request
If-modified-since:<date>

Server
– response contains no object if

cached copy is up-to-date:
HTTP/1.0 304 Not Modified

32

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

Client Server

Can see cache in firefox by typing about:cache. Google is a little bit harder to see

