Lecture 6: Application Layer

HTTP Protocol and Web proxies
COMP 332, Spring 2023

Victoria Manfredi

u N I Vv E R § I T Y

|y W

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

Announcements
— homework 2 due tonight, homework 3 posted

Web and HTTP

— non-persistent vs. persistent connections
— request and response messages

— web caching
« homework 3 and 4 will implement a version of this

Network Applications
WEB AND HTTP

Web’s application layer protocol

HTTP

— HyperText Transfer Protocol

Client/server model
PC running

— client Firefox browser
* browser that requests,
receives, (using HTTP
protocol) and “displays”
Web objects

— Sserver

» Web server sends (using
HTTP protocol) objects in
response to requests

Apache Web
server

iPhone running
Safari browser

HTTP overview

When you click on a link

1. client initiates TCP connection
— creates socket to server on port 80

2. server accepts TCP connection

W

1. Initiate TCP

. _ svyn
connection y

/

: syn/ack

from client) Reotect fi /

3. HTTP messages exchanged rednes 'e—\%‘
between browser (HTTP client) HTTP re

and Web server (HTTP server)

4. TCP connection closed 3. File received —

fin
4. Connection /
Two types of HTTP messages e fin/ack
— request, response
v v

time time

HTTP is a stateless protocol

Stateless
— server maintains no information about past client requests

Why stateless?

— stateful protocols are complex
» storage
— state must be maintained for potentially many clients
« server/client crashes
— views of state may be inconsistent, must be reconciled
« workaround: cookies

Format of a webpage

Web page consists of objects 1. index.htmi
— object can be HTML file, JPEG image, o
Java applet, audio file, ... 2. pic.jpg

— typically includes base HTML-file and 3. HWK.pdf

several referenced objects

All 3 objects must be
requested from server in
order to fully load webpage

Each object is addressable by URL, e.g.,

www . someschool .edu/someDept/pic. jpg
~—

host name path object

Q: How do we download multiple objects using HTTP?

HTTP Protocol

NON-PERSISTENT VS.
PERSISTENT CONNECTIONS

HTTP connections

2 ways to use HT TP requests to get objects
from web server

1. Non-persistent HT TP 2. Persistent HTTP
— at most one object sent over — multiple objects can be sent
TCP connection over single TCP connection
« connection then closed between client, server
— for each object, setup and use — reuse same TCP connection
separate TCP connection to download multiple objects
« downloading multiple objects — HTTP/1.1: by default

requires multiple connections
— HTTP/1.0

Non-persistent HTTP response time

Round-trip-time (RTT) &~
— time for small packet to travel sy
from client to server and back |nitiate TCP
connection_f—\
HTTP response time RTTS /
— 1RTT Request file —
« to initiate TCP connection RTT. \ tTime tqt
ransm
— 1RTT | \/} “file
« for HTTP req and first few recl;':sed—'
bytes of HTTP resp to return
— file transmission time v v
time time

Delay and resource usage
— requires 2 RTTs + file tx time per object
— OS must work and allocate host resources for each TCP connection
— browsers often open parallel TCP connections to fetch objects

Persistent HTTP

Server leaves connection open after sending response
— subsequent HTTP messages sent over open connection
— client sends requests as soon as it encounters referenced object

Persistent without pipelining
— client issues new request only when previous response received
— 1 RTT for each referenced object

Persistent with pipelining
— client issues new request as soon as it encounters referenced object

— as little as 1 RTT for all referenced objects
— default in HTTP/1.1

Persistent HTTP response time
With pipelining

[

Initiate TCP) -

Without pipelining
N

Initiate TCP %

connection \

RTT

Request
index.html

RTT/
Request
pic.jpg

RTTX

S
A\

~

Request
hwk.pdf

RTT

r

/V

time

Close
connection

RTT

Delay: 4RTT + 3Dome,

connection
RTT

Request
index.html

RTT

Request pic.jpg
Request hwk.pdf

RTT

Close
connection

RTT

\
*4/
\
/

~

. Time to
< } transmit
/ file

; >
\ \
time time

Delay: 3RTT + 2D+4ns

HTTP Protocol

REQUEST AND RESPONSE
MESSAGES

HTTP request message

ASCIl (human-readable format)

Request line

carriage return character
line-feed character

(GET, POST, """ GEr /index.html HTTP/1. 1\r\1':/1

HEAD commands)

Header lines

Carriage return,
line feed at start
of line indicates
end of header lines

Host: www-net.cs.umass.edu\r\n

User-Agent: Mozilla/5.0\r\n

Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: IS0O-8859-1,utf-8;g=0.7\r\n
Keep-Alive: 115\r\n

Connection: keep-alive\r\n

—— \r\n /f

Persistent
connection

Q: What info can server use to fingerprint you, without

even using cookies?

HTTP request format

method ([sp URL sp| version |cr

If

header field name I value K%

If

))}
[4 §

)
L 4 §

header field name I value

entity body

vumanfredi@wesleyan.edu

request
line

header
lines

body

15

Uploading form input

POST method

— web page often includes form input
— input is uploaded to server in entity body

URL method
— uses GET method
— input is uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeysé&banana

HTTP response message

Status line
(protocol
status code
status phrase)

Header
lines

Data, e.qg.,
requested
HTML file (may
be split across
multiple pkts

_“HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n .

Accept-Ranges: bytes\r\n Use to determine

Content-Length: 2652\r\n*”’/”/’ end of message

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=IS0-8859-
1\r\n

. \r\n
data data data data data
/

HTTP response status codes

Status code
— appears in 1st line in server-to-client response message.

Some sample codes
— 200 OK
* request succeeded, requested object later in this msg

— 301 Moved Permanently

* requested object moved, new location specified later in this msg
(Location:)

— 400 Bad Request
* request msg not understood by server
— 404 Not Found
» requested document not found on this server
— 500 Server error
— 505 HTTP Version Not Supported

HTTP status codes as Valentine’s Day cartoons

il 30| MOVED PERMANENTLY
WILL You WILL You Yes.
BE MY BE MY ALSO,
VALENTINE? VALENTINE? UPDATE YOUR
4 ADDR€S$
g %/ l,
LOL NOT FOUND 30L NOT CHANGED
DID WILL You WILL You WILL You
€3 BEMY BEMY MY ANSWER g MY ANSWER
N s R VALENTINE? VALENTINE? HASNT VALENTINE? STILLHASNT
J ii‘? EXIST‘? ; ¥Es CHANGED | (HANGED
L / g ; /
100 BAD REQUEST 500 SERVER ERROR
245 | HAVE NO WILL You
3 IDEA WHAT BE MY [CANT..
823° YOWRE SAYING VALEN”NE? IT's NoT You, From https://medium.com/@hanilim/http-
\ 'TS Me codes-as-valentines-day-comics-
g % g ‘%§ 8c03c805faal

HTTP 451

https://en.wikipedia.org/wiki/HTTP_451

“# <4 WIKIPEDIA
" w .V TheFree Encyclopedia

= HTTP 451

Article Talk

From Wikipedia, the free encyclopedia

In computer networking, HTTP 451 Unavailable For Legal Reasons is a
proposed standard error status code of the HTTP protocol to be displayed
when the user requests a resource which cannot be served for legal
reasons, such as a web page censored by a government. The number
451 is a reference to Ray Bradbury's 1953 dystopian novel Fahrenheit
451, in which books are outlawed.?! 451 provides more information than
HTTP 403, which is often used for the same purpose.®! This status code
is currently a proposed standard in RFC 7725 (2 but is not yet formally a
part of HTTP, as of RFC 9110 7.

Examples of situations where an HTTP 451 error code could be displayed
include web pages deemed a danger to national security, or web pages
deemed to violate copyright, privacy, blasphemy laws, or any other law or
court order.

The RFC is specific that a 451 response does not indicate whether the
resource exists but requests for it have been blocked, if the resource has

D T W R T T B T T L T T T T e

Q, Createaccount Login eee

XA 19 languages v

Read Edit View history
cC @ ETQ:M we €y D 9|=
A 451 status code returned by the =

Defence Distributed website to a client in
Pennsylvania, 30 July 2018.!]

HTTP

HTTP

Try out HTTP (client side) for yourself

1. Open tcp connection using netcat:

=

Opens TCP connection to port 80
(default HTTP server port) at w.edu.
Anything typed in will be sent to port

80 at www.eepurl.com

nc www.eepurl.com 80

=

Need to type sufficiently quickly so that tcp connection doesn’t time out

2. Type in a GET HTTP request: B
By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

“—

HTTP/1.1 so connection stays open, doesn'’t close right away, and can enter additional requests

GET / HTTP/1.1 —
Host: www.eepurl.com

3. Look at response message sent by HT TP server!
(or use Wireshark to look at captured HTTP request/response)

Netcat: useful for testing

Be a TCP server: listen for connections on port 51234
— nc -1 51234

Be a TCP client: connect to port 51234 on locahost
— nc localhost 51234
— type a string and press enter: you should see it show up at server
— type a string at server and press enter: you should see it at client

Look at connections you created
— netstat | grep 51234

Create a chat app with nc:
— nc -1 5000 on one machine with ip addr x
— nc x 5000 on another machine

HTTP Protocol
WEB CACHING

Web caches (proxy server)

Goal

— satisfy client request
without (really) involving
origin server

How?

— user sets browser to
perform web accesses
via cache

origin
server

Browser sends all HTTP requests to cache
— if object in cache
» cache returns object

— else
» cache requests object from origin server, then returns object to client

More about Web caching

Cache acts as both client and server
— server for original requesting client
— client to origin server

Typically cache installed by ISP

— university, company, residential ISP

Q: why use web caching?
— reduce response time for client request
— reduce traffic on institution’s access link
— reduce load on origin servers

— Internet dense with caches

« enables “poor” content providers to effectively deliver content (so too
does P2P file sharing)

Example

Avg req rate from browsers to Avg size of req obj: 100 Kbits
servers: 15 req/s Avg data rate to browsers: 1.50 Mbps
origin
institutional Servers
-~ network Eﬂ\
RTT from institutional public Eﬂ
-~ router to any server: 2s Internet _

===

> 1.51 Mbps
access link rate
1 Gbps LAN

LAN utilization: 1.5Mbps/1Gbps = 0.15%, assume ~ ysec
Access link utilization: 1.50/1.51 = 99%

Total delay =LAN delay + access delay + Internet delay
= Jsec + minutes + 2s

Delay as a function of utilization

Grows exponentially...

min !
. problem!

Delay

secC

ms

100%
Utilization

Why 99% access link utilization is bad!
What can we do?

Increase access link rate

Avg req rate from browsers to
servers: 15 reg/s

institutional
-~ network

RTT from institutional
-~ router to any server: 2s

Avg size of req obj: 100 Kbits
Avg data rate to browsers: 1.50 Mbps

origin
E servers
Eﬁ\ public Eﬂ
Internet B

===

> 151 Mbps
1 Gbps LAN

access link rate

LAN utilization: 1.5Mbps/1Gbps = 0.15%, assume ~ ysec

Access link utilization: 1.50/151 = 0.9%

But, increasing

Total delay = LAN delay + access delay + Internet delay 9CCESS link rate is

= usec + ms + 2s

expensive!

Install local cache

Avg req rate from browsers to Avg size of req obj: 100 Kbits
servers: 15 req/s Avg data rate to browsers: 1.50 Mbps
origin
N institutional Servers
~ network Eﬁ\
RTT from institutional public Eﬂ
-~ router to any server: 2s Internet _

===

e 1.51 Mbps

1 Gbps LAN access link rate
local web

cache

Web cache is cheap!
How to compute access link utilization and delay?

Access link utilization and delay with cache

Avg req rate from browsers to Avg size of req obj: 100 Kbits
servers: 15 req/s Avg data rate to browsers: 1.50 Mbps
origin
institutional SErvers
-~ network Eﬁ\
RTT from institutional public Eﬂ
-~ router to any server: 2s Internet I

===

1.51 Mbps

1 Gbps LAN access link rate
local web

cache

Data rate to browsers over access link
— 0.6 x 1.50 Mbps = 0.9 Mbps

Access link utilization
— 0.9 Mbps /1.51 Mbps = 60%

Assume access delay: ~700 msec

Assume cache hit rate is 0.4
— 40% of requests satisfied at cache
— 60% of requests satisfied at server
— thus, 60% of requests use access link

Total delay with cache

Avg req rate from browsers to Avg size of req obj: 100 Kbits
servers: 15 req/s Avg data rate to browsers: 1.50 Mbps
origin
institutional Servers
network Eﬁ\
RTT from institutional public Eﬂ
-~ router to any server: 2s Internet I

===

N 1.51 Mbps

1 Gbps LAN access link rate
local web

cache

Total delay
= 0.6 x (delay when satisfied by servers) + 0.4 x (delay when satisfied by cache)
= 0.6 x (LAN delay + access delay + Internet delay) + 0.4 x (LAN delay)
= 0.6 (usec + 700 msec + 2 sec) + 0.4 (usec)
= 0.6 (2.7 sec) + 0.4 (usec) = ~1.6 sec

Conditional GET

Client Server
Goal w

— don’t send object if cache has <&
up-to-date version

— no object transmission delay
— lower link utilization

—

HTTP request msg
If-modified-since: <date> |—, object

not
HTTP response /”E)cﬁg'rzd
Cache — HTTP/1.0 s
— specify date of cached copy in 304 Not Modified
HTTP request
If-modified-since:<date>
—| HTTP request msg
Server If-modified-since: <date> —. object
— response contains no object if HTTP /mgf?ged
cached copy is up-to-date: response <date>

] HTTP/1.0 200 OK
HTTP/1.0 304 Not Modified <data>

Can see cache in firefox by typing about:cache. Google is a little bit harder to see

