
Lecture 5: Application Layer
Overview and HTTP

COMP 332, Spring 2023
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved.

Announcements
– homework 2 due Tuesday. by 11:59p
– server_sock vs. client_conn
– battleship example

Network Measurement
– sources of delay
– Wireshark: looking at real traffic

Application layer
– overview
– Web and HTTP

HTTP protocol
– requests, responses, error codes

2vumanfredi@wesleyan.edu

Network Measurement

vumanfredi@wesleyan

A

B

If link arrival rate > transmission rate link for some time
– packets will queue, wait to be transmitted on link
– packets can be dropped (lost) if memory (buffer) fills up
– lost packet may be retransmitted by previous node, by source end

system, or not at all
Packet being transmitted (delay)

Packets queueing (delay)
Free space in queue: arriving
packets dropped (loss) if no

free buffers

dproc: processing delay
– check bit errors
– determine output link
– fast: typically < msec
– usually done in hardware

not software

propagation

nodal
processing queueing

dnodal = dproc + dqueue + dtrans + dprop

A

B

transmission

vumanfredi@wesleyan

dqueue: queueing delay
– time waiting at output link

for transmission
– depends on congestion

level of router

dtrans and dprop
very different

vumanfredi@wesleyan

propagation

nodal
processing queueing

dnodal = dproc + dqueue + dtrans + dprop

A

B

transmission

dtrans: transmission delay
– depends on link bandwidth
– L: packet length (bits)
– R: link bandwidth (bps)
– dtrans = L/R

dprop: propagation delay
– 𝜇s (within campus) to ms (satellite link)
– d: length of physical link
– s: propagation speed (~2x108 m/s)
– dprop = d/s

Q: what is end-end delay ignoring queuing delay?

vumanfredi@wesleyan

End-end delay = N * (dproc+dtrans+dprop)

...

Suppose N-1 routers

Rate at which bits transferred between sender/receiver
– measured in bits/time unit
– instantaneous: rate at given point in time
– average: rate over longer period of time

Server, with
F-bit long file to
send to client

vumanfredi@wesleyan

Rs bits/sec Rc bits/sec

Rs < Rc What is average end-end throughput?

Rs > Rc What is average end-end throughput?

link on end-end path that constrains end-end throughput
bottleneck link

Rs bits/sec Rc bits/sec

Rs bits/sec Rc bits/sec

Per-connection end-
end throughput

– min(Rc, Rs, R/10)

In practice
– Rc or Rs is often

bottleneck

10 connections (fairly) share R
bits/sec backbone bottleneck link

Rs

Rs
Rs

Rc

Rc

Rc

R

vumanfredi@wesleyan

Network Measurement

vumanfredi@wesleyan

Traceroute program
– provides delay measurement from source to router along end-end

Internet path towards destination

How?
– for all i:

• sends three packets that will reach router i on path towards destination
– sets packet time-to-live (TTL) to i

• router i will return packets to sender
• sender times interval between transmission and reply for each packet

– measures Round Trip Time (RTT) delay

Note
– different probe packets may take different paths, so delays can vary

3 probes

3 probes

3 probes

traceroute: from wesleyan network to cs.stanford.edu

3 delay measurements
from cs.stanford.edu

* means no response (probe lost, router not replying)

cross-country links

Run traceroute and see what
traffic is generated

vumanfredi@wesleyan.edu

Application Layer

vumanfredi@wesleyan.edu 15

Application software
– processes running different hosts, communicate via messages

Application architecture
– client-server vs. peer-to-peer vs. hybrid
– overlaid on network architecture

Internet

transport

application

physical
link

network

process

transport

application

physical
link

network

process
User Space

Operating
System

16vumanfredi@wesleyan.edu

Define
– types of messages exchanged

• e.g., request, response
– message syntax

• fields in messages, how delineated
– message semantics

• meaning of info in fields
– rules

• for when and how processes send
and respond to messages

Rely on transport layer
– to get messages from process on

one host to process on another host

Open protocols
– defined in RFCs
– support interoperability
– e.g., HTTP, SMTP

Proprietary protocols
– e.g., Skype

transport

physical
link
network

GET / HTTP/1.1

Provide specific services to application

17

Dictate what transport layer services application needs
TCP or UDP (or SSL/TCP or QUIC if you’re Google)?

Service App requirements
Reliable data transfer: does all
data need to be received?

Loss-tolerant? E.g. video?

Throughput: does data need to
be delivered quickly? Is app
sending lots of data?

Bandwidth sensitive? E.g., video
Elastic traffic? E.g., use as much/little
bandwidth as available

Timing: does data need to be
delivered at certain min rate?

Time-sensitive? E.g., voice, video need
low delay

Security: does data need to be
secured from eavesdroppers
and modification?

Encryption?
Data integrity?
Endpoint authentication?
Confidentiality?

TCP service
– connection-oriented

• setup required between client and
server processes

– reliable transport
• messages delivered to destination

process without error and in-order
– congestion control

• sender reduces sending rate when
network is overloaded

– flow control
• sender reduces sending rate when

destination is overloaded
– does not provide

• timing, minimum throughput or
delay guarantee, security

UDP service
– unreliable data transfer

• best-effort service
between sender and
destination processes

– does not provide
• reliability
• flow control
• congestion control
• timing
• throughput guarantee
• security
• connection setup

Q: why bother? Why is
there a UDP?

19vumanfredi@wesleyan.edu

Application

File transfer
E-mail

Web documents
Real-time audio/video

Stored audio/video
Interactive games

Text messaging

Data loss

no loss
no loss
no loss

loss-tolerant

loss-tolerant
loss-tolerant

no loss

Throughput

elastic
elastic
elastic

audio: 5kbps-1Mbps
video:10kbps-5Mbps

same as above
few kbps up

elastic

Time sensitive

no
no
no

yes, 100’s msec

yes, few secs
yes, 100’s msec

yes and no

Q: other apps you can think of?

20vumanfredi@wesleyan.edu

Application

E-mail
Remote terminal access

Web
File transfer

Streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]

FTP [RFC 959]
HTTP (e.g., YouTube),

RTP [RFC 1889]
SIP, RTP, proprietary

(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP

TCP or UDP

TCP or UDP

Associated with each app is an app layer protocol: depending
on app requirements, runs over specific transport protocols

Q: where does security come into play?
21vumanfredi@wesleyan.edu

TCP & UDP
– no encryption: cleartext passwords sent

into socket traverse Internet in cleartext

TLS/SSL
– at app layer

• apps use SSL libraries, that “talk” to TCP
– provides encrypted TCP connection

• data integrity
• end-point authentication

TLS/SSL socket API
– cleartext passwords sent into socket

traverse Internet encrypted

transport

physical
link
network

GET / HTTP/1.1

transport

physical
link
network

GET / HTTP/1.1

agaLw3236Fgh
SSL

Q: Why does SSL run over TCP?
How is TLS/SSL related to OSI model? 22

Network Applications

vumanfredi@wesleyan.edu 23

HTTP
– HyperText Transfer Protocol

Client/server model
– client

• browser that requests,
receives, (using HTTP
protocol) and “displays”
Web objects

– server
• Web server sends (using

HTTP protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

24vumanfredi@wesleyan.edu

1. Initiate TCP
connection

2. Request file

3. File received

time time

syn

syn/ack

HTTP req

HTTP resp

fin

fin/ack4. Connection
closed

25vumanfredi@wesleyan.edu

When you click on a link
1. client initiates TCP connection

– creates socket to server on port 80
2. server accepts TCP connection

from client
3. HTTP messages exchanged

between browser (HTTP client)
and Web server (HTTP server)

4. TCP connection closed

Two types of HTTP messages
– request, response

Stateless
– server maintains no information about past client requests

Why stateless?
– stateful protocols are complex

• storage
– state must be maintained for potentially many clients

• server/client crashes
– views of state may be inconsistent, must be reconciled

• workaround: cookies

26vumanfredi@wesleyan.edu

Web page consists of objects
– object can be HTML file, JPEG image,

Java applet, audio file,…
– typically includes base HTML-file and

several referenced objects

Each object is addressable by URL, e.g.,

www.someschool.edu/someDept/pic.jpg

host name path

2. pic.jpg
3. HWK.pdf

1. index.html

All 3 objects must be
requested from server in

order to fully load webpage

object

Q: How do we download multiple objects using HTTP?
27vumanfredi@wesleyan.edu

1. Non-persistent HTTP
– at most one object sent over

TCP connection
• connection then closed

– for each object, setup and use
separate TCP connection

• downloading multiple objects
requires multiple connections

– HTTP/1.0

2 ways to use HTTP requests to get objects
from web server

2. Persistent HTTP
– multiple objects can be sent

over single TCP connection
between client, server

– reuse same TCP connection
to download multiple objects

– HTTP/1.1: by default

Q: Which is faster? Which is better?

28vumanfredi@wesleyan.edu

Suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP
server (process) at
www.wesleyan.edu
on port 80

2. HTTP client sends HTTP
request message (containing

URL) into TCP connection
socket. Message indicates

client wants object
mathcs/index.html

1b. HTTP server on host
www.wesleyan.edu waiting
for TCP connection at port 80
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into its
socket

time

www.wesleyan.edu/mathcs/index.html

29vumanfredi@wesleyan.edu

5. HTTP client receives response
message containing html
file, displays html. Parsing
html file, finds 10 referenced
jpeg objects

6. Steps 1-5 repeated for the 10
referenced jpeg objects referred
to in index.html

4. HTTP server closes TCP
connection.

time

30vumanfredi@wesleyan.edu

