Lecture 4: IP Addresses, Sockets, and
System Programming

COMP 332, Spring 2023
Victoria Manfredi

WESLEYAN
U N | V E I T Y

3
R §
*

.
‘dl-

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

— homework 1 due today, homework 2 posted
« tictactoe.py solution code will be posted once homework1 submitted

2. Network applications

3. Network programming
— TCP sockets

4. Network tools
— Wireshark: looking at real traffic

Internet Organization
IP ADDRESSES

Every device on Internet has an IP address

IPv4 addresses
— 4 bytes
» space of addresses: 0-255 . 0-255 . 0-255 . 0-255
* hostnames are human-readable, IP addresses are machine-readable

— Loopback address: send traffic to yourself

« traffic sent here is “looped back” through network stack on machine on
which sending process is running

« 127 .* % F
« typically 127.0.0.1, also called localhost
— Private subnet addresses

- 107 .* ¥ Subnet: shared prefix
¢ 172.16-31 .* * portion of addr
« 192.168 .* .*

|IPv6 addresses
— 16 bytes: we’re running out of 4 byte addresses ...

Who owns what address ranges?

Amazon

— 50.19.%*.* — 256 x 256 = 65536
addresses

— 54.239.98.* — 256 addresses

Google
— 64.233.160.0 to 64.233.191.255
— 66.102.0.0 t0 66.102.15.255

Facebook
— 57.240.0.0/17
— 157.240.10.0/24
— 157.240.1.0/24

Wesleyan
— 129.133.21.%

How are IP addresses assigned?

Your ISP or institution has block of IP addresses
— you are assigned one of those |IP addresses
— (possible you will get NAT'd address ...)

Static IP address

— manual configuration: set in network settings

Dynamic IP address
— using Dynamic Host Configuration Protocol (DHCP) in network-layer
— client (you) broadcasts request for IP address

— DHCP server on network assigns you address from address pool
« typically get IP address for fixed period of time
 router can be configured to act as DHCP server

Actually ...

Many hosts have multiple IP addresses

How??
— |P address associated with network interface not host
— network interface card (NIC): connects computer to network

A host may have 1 or more network interfaces
— my laptop has (at least) 2 NICs: 1 wireless and 1 wired (via USB)

— router needs at least two interfaces
« otherwise can’t connect multiple networks together

— Cisco core router: can have up to 10,000 interfaces!
» one interface per link: router has many IP addresses

VirtualBox Virtual Machine (VM)

— you can set the number and type of network interfaces for VM

What's my IP address?

Ifconfig
— what network interfaces does my machine have?
— what are my IP and MAC # addresses?
— configure/enable/disable an interface

vmanfred@curveball-VirtualBox:~$ ifconfig

Linux etho Link encap:Ethernet HWaddr 08:00:27:e2:65:b0
inet addr:129.133.178.53 Bcast:129.133.191.255 Mask:255.255.240.0
Ethernet 0 inet6 addr: fe80::a00:27ff:fee2:65b0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
IPV4 address RX packets:102302 errors:0 dropped:® overruns:0 frame:0
IPv6 address TX packets:29698 errors:0 dropped:0 overruns:® carrier:0

collisions:® txqueuelen:1000
RX bytes:141037591 (141.0 MB) TX bytes:2394226 (2.3 MB)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
Loopback RX packets:1912 errors:0 dropped:® overruns:0 frame:0
TX packets:1912 errors:0 dropped:® overruns:0 carrier:0
address collisions:® txqueuelen:0

RX bytes:146886 (146.8 KB) TX bytes:146886 (146.8 KB)

What's host’'s IP address?

Host

.google.com

.com has address 74.125.141.99
.com has address 74.125.141.103
.com has address 74.125.141.105

.com has address 74.125.141.147
.com has address 74.125.141.104
.com has address 74.125.141.106
.com has IPv6 address 2607:f8b0:400c:c06::93

What's host name for IP address?
> host 8.8.8.8

8.8.8.8.1in-addr.arpa domain name pointer google-public-dns-a.google.com.

What's host’'s IP address?

> dig www.google.com

; <> DiG 9.8.3-P1 <<> www.google. com

;3 global options: +amd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4619

;3 flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: @, ADDITIONAL: O

;3 QUESTION SECTION:
;www . google.com, IN

;3 ANSWER SECTION:
.com, 56 74.125.141.104
.com, 56 74.125.141.103
.com, 56 74.125.141.105
.com, 56 74,125,141 .147
.com, 56 74.125.141.99
.com, 56 74.125.141.106

;3 Query time: 7 msec

;3 SERVER: 129.133.52.12#53(129.133.52.12)
;3 WHEN: Mon Jan 22 14:06:38 2018

;3 MSG SIZE rcvd: 128

DNS resolver used

Is host up?

Ping
— sends ICMP echo request to host
— host sends ICMP echo reply back
— If no reply within timeout period, packet deemed lost

> ping stanford.edu

PING stanford.edu (171.67.215.200): 56 data bytes

64 bytes from 171.67.215.200: icmp_seg=0 ttl=237 time=94.951 ms
64 bytes from 171.67.215.200: iamp_seg=1 ttl=237 time=94.738 ms
64 bytes from 171.67.215.200: icmp_seg=2 ttl=237 time=95.525 ms
64 bytes from 171.67.215.200: icmp_seg=3 ttl=237 time=194.993 ms
64 bytes from 171.67.215.200: icmp_seg=4 ttl=237 time=97.139 ms

64 bytes from 171.67.215.200: icmp_seg=5 ttl=237 time=95.878 ms
64 bytes from 171.67.215.200: icmp_seg=6 ttl=237 time=95.667 ms
AC

--- stanford.edu ping statistics ---

7 packets transmitted, 7 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 94,738/109.842/194.993/34.770 ms

Is one IP address per machine enough?

What happens if you run multiple network applications?

— many processes running on computer
* process is program in execution

How do messages received by computer get to right process?
— messages are addressed to (IP address, port #) pair

— different processes on computer will connect to network using same
|IP address but different port numbers

2 key functions of Internet core

How does Internet router determine outgoing link for packet?

1. Routing 2. Forwarding
« view Internet as giant graph use paths to choose best output link
* run shortest path algorithms for packet destination IP address

* if one link fails, chooses another

Routing algorithm %
Local forwarding table %

Dest IP | Output link
129.133.*.* 3
43.*** 2
43.56.*.* 2
189.37.35.* 1

Dest IP addr in header of arriving
packet (sequence of bits)

Routing of packets across Internet

Each router uses its forwarding table to choose outbound link
based on packet’s destination

www.google.com
aka 172.217.12.20¢€

regional net’

Es

vumanfredi@wesleyan.edu 14

Your host
e.g., 129.133.176.1

Network Applications
OVERVIEW

Creating a network app

Write programs that
— run on (different) end systems
— communicate over network

— e.g., web server software
communicates with browser
software

Q: Do we need to write software
for network-core devices?

— No, network-core devices do not
run user applications

— applications on end systems
allows for rapid app
development, propagation

CCE TP
>

application
transport
network

data link
physical

%ﬁ

<4

application
transport
network
data link
physical

transport
network

data link
physical
2N\

Client-server architecture

Client host requests and receives service
from always on server host

Server

— always-on, dedicated host
= * e.g., web server

— permanent IP address
— data centers for scaling

=

Res
P Clients

— communicate with server
— may be intermittently connected
— may have dynamic IP addresses

« — do not communicate directly with
g | | other clients

Client and server devices
are not equivalent

Peer-to-peer (P2P) architecture

Peers request service from other peers, provide
service in return to other peers

End systems directly communicate e

— self scalability — new peers bring
new service capacity, as well as
new service demands

— minimal/no use of always-on server
— E.g., Skype, BitTorrent

Complex management

— peers are intermittently connected
and change IP addresses

— Q: why is this complex?

All devices are equivalent: a
client can also be a server

Processes communicating

Process Clients, servers
— program in execution, running

oY — client process
within a host

» process that initiates
communication

Processes within same host — Server process
— communicate by using inter- » process that waits to be
process communication contacted
(defined by OS)
Aside
Processes on different hosts — applications with P2P
— communicate by exchanging architectures also have
messages client & server processes

Our goal learn how to build client/server
applications that use sockets to communicate

Network Programming
OVERVIEW

How do two processes talk over a network?

Via sockets
— interface transport layer provides to apps to access network
— connection endpoint with associated IP addr, port #

Client Process Server Process
. Client Port # | Server Port #
Socket Socket
TCP or UDP Network TCP or UDP

Client IP address U Server IP address
Well-known ports: 0-1023

— E.g., HTTP is port 80
Registered ports: 1023-49151
Available ports: 49152-65535

Python socket module

Import socket

— gives access to BSD (Berkeley Socket Distribution) socket interface
» POSIX sockets <-> Berkeley sockets <-> BSD sockets
 available on pretty much every modern operating system

Resources
— https://docs.python.org/3/howto/sockets.html
— https://docs.python.org/3/library/socket.html

Socket exceptions
— https://docs.python.org/3/library/socket.html#exceptions

You must read/write bytes from/to a socket
— encode string to bytes: string.encode(‘utf-8’)
— decode string from bytes: string.decode(‘utf-8’)

https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html

Sockets

Address families

— AF_UNIX

* local, inter-process communication
— AF_INET4

 Internet protocol v4
— AF_INET6

* Internet v6

Socket types
— SOCK DGRAM
« UDP packets
— SOCK_STREAM
» TCP packets

— SOCK_RAW

» don’t let OS process transport
header on packet, have OS
send/receive raw packet

Part of process identifier:
e.g., <ip address, port>
To send HTTP message to

wesleyan.edu web server
— |P address: 129.133.7.68

— port number: 80

Different types of service
offered by different
socket types

2 main socket types for 2 transport services

—_—

TCP (Transmission Control Protocol)

— connection-oriented

» before data exchange takes place, a
logical connection is first established

— reliable, byte stream-oriented

 delivery is in-order, error- and loss-free,
no duplication

e’
E—
UDP (User Datagram Protocol)
— connection-less
« data is sent directly in a best-effort way
— unreliable
« data can arrive out-of-order, be lost, corrupted,
duplicated

——

App reads in-order,

~ error-free bytes from

socket

App reads whatever is

currently at socket, whether

out-of-order, missing etc.

Any reliability must be
Implemented by app

Send data (from python reference)

socket.send(bytes) - TCP

— Send data to the socket. The socket must be connected to a remote
socket. Returns the number of bytes sent. Applications are responsible for
checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data

socket.sendall(bytes) - TCP

— Send data to the socket. The socket must be connected to a remote
socket. Unlike send(), this method continues to send data from bytes until
either all data has been sent or an error occurs. None is returned on
success. On error, an exception is raised, and there is no way to determine
how much data, if any, was successfully sent.

socket.sendto(bytes, address) - UDP

— Send data to the socket. The socket should not be connected to a remote
socket, since the destination socket is specified by address.

https://docs.python.org/3/library/socket.html

Receive data (from python reference)

Socket.recv(num_bytes)

— Receive data from the socket. The return value is a bytes object
representing the data received. The maximum amount of data to be
received at once is specified by bufsize.

Partial Send/Recv

socket.sendall()
— generally preferable to use to eliminate partial send

socket.recv()

— app needs way to know whether it has read everything from socket
« “end” flag
« a priori knowledge of number of bytes to read

— typically put recv() in while loop
« keep reading until nothing left to read from socket

Endianness

Big endian
— big end first: largest byte (containing most significant bit) first

Little endian
— little end first: smallest byte (containing least significant bit) first

Network byte order
— big endian

UTF-8 byte order

— stays the same regardless of endian-ness of machine
— i.e., you shouldn’t need to worry about byte order

Network Programming
TCP SOCKETS

Socket programming with TCP

Client must first contact server When contacted by client

before sending data — server TCP creates new
— server process must be running socket fo_r SErver process to
 creates socket (door) that communicate with that

welcomes client’ s contact particular client
» allows server to talk with
multiple clients

How? « source port numbers used
— create TCP socket to distinguish clients
» specify server IP addr, port #

— "handshake” occurs
« TCP Syn/Synack/Ack
exchanged TCP provides reliable, in-order
- if succeeds, connection byte-stream transfer (“pipe”)
established, can send data between client and server

Application viewpoint

TCP Socket

Establish connection, read/write
bytestream, only packets with matching P1.Port],
4-tuple (src ip, src port, dst ip, dst port) IP3,Port3

are pushed to application

Source 1 IP1,Port1,

IP3,Port3
g - tr¢; spc:rt
w Internet nqﬁwork
IP1, Port1 g [ro
«,Q’\—/)5hy5|cal

IP2,Port2, IP3, Port3

Source 2 p3.Port3
g]
IP2, Port2

Client/server socket interaction: TCP

Server running on serverlP

Client running on clientlP

Create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_STREAM)

Wait for incoming
connection request

connectionSocket =
serverSocket.accept()

[
»

read request from
connectionSocket

write reply to —

connection setup

create socket,
—» connect to serverlP, port=x

clientSocket = socket()

Send request using
ClientTocket

connectionSocket

l

close
connectionSocket

Read reply from
clientSocket

1

Close clientSocket

Application example

1. Client

— reads a line of characters (data) from its keyboard and sends data
to server via socket

2. Server
— receives data from socket and converts characters to uppercase

3. Server
— sends modified data to client

4. Client
— receives modified data and displays line on its screen

Application example: TCP server

Python TCPServer

from socket import *
create TCP welcoming serverPort = 12000

socket » serverSocket = socket(AF _INET,SOCK_STREAM)
- serverSocket.bind((”,serverPort))
e B e serverSocket.listen(1)
print “The server is ready to receive’

loop forever

v

while True:
server waits on accept()

rVer), connectionSocket, addr = serverSocket.accept()
for incoming requests, new

socket created on return

read bytes from socket ot Sentence = connectionSocket.recv(1024).decode()
not address as in UDP) capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.
encode())

close connection to this———— connectionSocket.cIose()
client (but not welcoming

socket)

Application example: TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000
create TCP socket for clientSocket = socket(AF _INET, SOCK STREAM)

server, Temote port ——— cIientSocket.connect@erName,se?ve?%{D
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())

No need to attach ______,modifiedSentence = clientSocket.recv(1024)

server name, port print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

echo_client.py and echo_server.py

L ook at code and run:
available on class schedule

Packet sniffing
WIRESHARK

How can | look at network traffic?

Packet sniffer

— passively observes messages transmitted and received on a
particular network interface by processes running on your computer

— often requires root privileges to run

Popular packet sniffers
— Wireshark (also command-line version, tshark)

— tcpdump (Unix) and WinDump (Windows)
— use command line sniffers to analyze packet traces with bash script

Packet sniffer operation

application
(www browser,

email client)

packet
analyzer

packet
capture

(pcap)

Transport (TCP/UDP)
Network (IP)
Link (Ethernet)
Physical

vumanfredi@wesleyan

39

Wireshark

Install
— https://www.wireshark.org/download.html

Run
— type Wireshark in terminal, or double-click icon
— Wireshark display may look different for Linux vs. Mac vs. Windows

| NON M The Wireshark Network Analyzer
W | Apply a display filter ... <38/> | —p | '] Expression... +
Welcome to Wireshark
Capture
...using this filter: | | Enter a capture filter ... |

Choose an | M i

|nte rface to Thunderbolt Bridge: bridge0
Thunderbolt 1: en1

ca ptu re Thunderbolt 2: en2
. p2p0
trafflc on Loopback: lo0

NERREE

https://www.wireshark.org/download.html

What do we see?

@00 | | d Wi-Fi: en0 | |

AN L@ FF"RR0asEF IR H Q QQE

M Appﬁyadispiayfilter...d# Dlsplay Fllter v] Expression... +

T RETEr Source IP Dest IP g Protocols gz Protocol State |
7.31391 g Destination unreachable

79 7.315676 129.133.6. 10 129 133 178 53 DNS 166 Standard query response ©xbd43 A 1n—-
80 7.374379 173.192.82.195 129.133.182.236 TLSv1.2 97 Application Data —
Tttt ©29.133.182.236 173.192.82.195 TCP 66 62762 - 443 [ACK] Seq=1 Ack=32 win=—
(:Eir)tllregci 29.133.182.236 173.192.82.195 TLSv1.2 101 Application Data
73.192.82.195 129.133.182.236 TCP 66 443 - 62762 [ACK] Seq=32 Ack=36 Win
packets 29.133.182.236 129.133.72.61 TCP 181 [TCP segment of a reassembled PDU]
0.ULILUD 129.133.72.61 129.133.182.236 TCP 181 [TCP segment of a reassembled PDU]
86 8.017283 129.133.182.236 129.133.72.61 TCP 66 62496 - 8009 [ACK] Seq=231 Ack=231
87 8.578356 JuniperN_le:18:01 Broadcast ARP 64 Gratuitous ARP for 129.133.176.1 (R
88 8.622793 129.133.182.236 216.58.219.229 TCP 54 63800 - 443 [ACK] Seq=1 Ack=1 Win=4
8.639661 216.58.219.229 129.133.182.236 [TCP ACKed unseen segment] 443 - 63
90 9.602437 JuniperN_le:18:01 Broadcast ARP 64 Gratuitous ARP for 129.133.176.1 (R
91 9.848778 129.133.182.236 198.105.244.104 e 78 668 - 515 [SYN] Seq=@ Win=65535 Len

Frame 77: 166 bytes on wire (1328 bits), 166 bytes captured (1328 bits) on interface ©

Ethernet II, Src: JuniperN_1e:18:01 (3c:8a:b0:1e:18:01), Dst: Apple_c5:b4:9a (78:31:cl:c5:b4:9a)

Internet Protocol Version 4, Src: 129.133.6.11, Dst: 129.133.178.53

User Datagram Protocol, Src Port: 53 (53), Dst Port: 44065 (44065) F’Ei(:l((;t

Domain Name System (response) 2 hex d|g|ts — 1 byte: 1 ascii char details

vyVvyvyvwVyy

78 31 c1 c5 b4 9a 3c 8a b0 le 18 01 08 00(a5900 x1....<.>E.)
00 98 20 98 00 @0 3e 11 a0 72 81 85 @6 %b 81 85>. .r...... Packet contents in hex

b2 20 01 T T e Y

If you click on pkt or header field, : T h
00 93 63 t.nyt. and asc can ma C
6f will highlight hex/ascii fields and 20 01 G Il t

o vice versa el R gl bytes to header

A nes.gems lcedgekey

wireshark_pcapng_en0_20160824155218_HN8Ru3 Packets: 48516 - Displayed: 48516 (100.0%) - Dropped: O (0.0%) Profile: Default

What do we see?

B/ B.D/8300 JUunlpern_leiisivl proaacastct ARF 04
88 8.622793 129.133.182.236 216.58.219.229 TCP 54

8.639661 .58 129.133.182.236 I'C
Layers 90 9.602437 JuniperN_le:18:01 Broadcast ARP 64
Phy8|ca| =)) Frame 77: 166 bytes on wire (1328 bits), 166 bytes captured (1328 bits) on inter
Link —=p » Ethernet II, Src: JuniperN_le:18:01 (3c:8a:b0:1e:18:01), Dst: Apple_c5:b4:9a (78

> » Internet Protocol Version 4, Src: 129.133.6.11, Dst: 129.133.178.53
Network f/ » User Datagram Protocol, Src Port: 53 (53), Dst Port: 44065 (44065)
[

Domain Name System (response)

Transport /
Application 9000 78 31 c1 c5 b4 9a 3c 8a b@ le 18 @1 08 00 45 @0 Xl....<.E.

0010 ©0 98 20 98 00 00 3e 11 a@ 72 81 85 06 Ob 81 85 Teeiuas
2020 b2 35 00 35 ac 21 00 84 ee d2 24 fc 81 80 00 @1 .5.5.!.. ..S....n
2030 ©0 03 00 00 00 00 ©3 69 6e 74 @3 6e 79 74 83 63 i nt.nyt.c
2040 6T 6d 00 00 01 00 91 cO ©Oc 00 ©5 00 @1 90 00 @1 OMivuues susnsnnn
0050 ad 00 22 @8 77 69 6c 64 63 61 72 64 @7 6e 79 74 ..".wild card.nyt
0060 69 6d 65 73 @3 63 6T 6d 07 65 64 67 65 6b 65 79 imes.com .edgekey

. o -.,:':. ar< capni - 2 .A - _: b SR . . - 1 . - la -

Add a filter

[NN M Wi-Fi: enO
48, rcpl BB ReEFILIGARQAT
traffic T Seeonly TCP - —

3.182.236 129.133.73. CP segment of a reassembled PDU] =

20 ©.362499 129.133.182.236 129.133.73.18 TCP 66 62919 - 8009 [ACK] Seq=116 Ack=116 |
. 21 0.393788 129.133.182.236 52.209.21.15 TCP 1424 ITCP conmant nf 2 roassembled PDU]
. 22 0.393789 129.133.182.236 52.209.21.15 TLSV1.2
. 25 0.499503 129.133.182.236 52.209.21.15 TCP TLS protocol runs =2269 Ack=5374
. 30 1.725135 129.133.182.236 129.133.72.223 TCP over TCP ;sembled PDU] | |

Frame 18: 181 bytes on wire (1448 bits), 181 bytes captured (1448 bits) on interface ©
Ethernet II, Src: Apple_c5:b4:9a (78:31:cl:c5:b4:9a), Dst: JuniperN_1le:18:01 (3c:8a:b@:1e:18:01)
Internet Protocol Version 4, Src: 129.133.182.236, Dst: 129.133.73.18
Transmission Control Protocol, Src Port: 62919 (62919), Dst Port: 8009 (8009), Seq: 1, Ack: 1, Len:
Source Port: 62919
Destination Port: 8009
[Stream index: 1]
[TCP Segment Len:
Sequence number: 1 (relative sequence number)
[Next sequence number: 116 (relative sequence number)]
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes

4 vVvVYyYyYy

115

115]

» Flags: @x@18 (PSH, ACK)

Window size value: 4096

[Calculated window size: 4@96]
P00 3c 8a b® 1e 18 91 78 31 <c1 c5 b4 9a @08 90 45 @0 » LT, ¢l | R
0019 00 a7 71 c6 40 00 49 @6 c5 81 81 85 b6 ec 81 85 ¢0Qe@c@: cssssaas
0020 49 12 f5 ¢7 1f 49 13 al ©0e 17 4a 03 85 8e 80 18 Piate arnilluie) o) mime e
Q030 10 00 d6 aa 00 90 91 21 ©8 0a 41 89 ©a 69 00 @8 Tyt SRR (R, R
0040 7d e2 17 03 03 00 6e 00 0O 00 00 99 ©0 04 le 15 | SERIERCET i S S
P05 73 6f 3b 63 f0 86 d9 d3 bd 17 fc 94 3d a9 43 8 SO} Ciian luinian=uls
P060 4e 63 ea d8 c@ be bf f1 al d5 3b 6a a6 dﬁ/ﬁ}ngﬁbﬁfﬁﬂﬂﬁbvves#ev%ﬂﬁ'K

.7

Transmission Control Protocol: Protocol

Packets: 48516 - Disnlaved: 46527 (95.9%) + Drobnped: 0 (0.0%)

Profile: Default

