Lecture 19: Network Layer

Routing in the Internet

COMP 332, Spring 2023
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

— hw7 written due Wed. at 11:59p (~1 week), programming due next Wed.
(~2 weeks)

— what’s a virtual machine?

— run the traceroute command and look at traffic in wireshark
« compare with pkts you're generating

— socket.inet_aton, socket.ntoa_inet()
» to convert string address to/from 32-bit packed address

2. Distance vector routing

3. Internet routing
— overview

4. Internet Control Message Protocol (ICMP)

Takeaways from last time

Global information Local/decentralized information
— global link state algorithms — decentralized distance vector algorithms
— all routers have complete — router knows only physically-connected
topology, link cost info neighbors, link costs to neighbors
— exchange info ony about — iterative computation
neighbors but with all nodes — exchange info about all nodes but only

with neighbors

Both are used on Internet. First cover abstractly and then talk
about specific Internet protocols (OSPF, BGP, RIP, ...)

Takeaways from last time

Link state routing

— every node exchanges with every other node in network information
about its links to neighbors

— then each node runs Dijkstra’s knowing complete graph

— every node its distance estimates to
every other node in network
— then each node using new estimates

from neighbors, then sends its own new estimates to neighbors

Given min cost paths
— can directly compute forwarding table
— forwarding table is used by routers to find next hops for packets

— these min cost paths will need to be periodically recomputed, which
can introduce problems

Control Plane
LINK STATE ROUTING

c(i,j): link cost from node i to node j
Dij kStra,S algorlthm D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
u 2,U 5u °0 °0
UX N 4

x is notin N’, and D(x) is lowest

O hOWN - O

Loop

Findj & N's.t. D(j) is min
) Add j to N
Now we know the lowest cost
path from u to x. Why?

Source
node Any other path from u to x must

go through neighbor of u to get
fo x. But we just looked at all
neighbors of u

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,U o,u c0 °0
1 ux -
2
3
4
5 Loop
Findj & N's.t. D(j) is min
3 Add jto N'

Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)+c(j,k))

Source 5 Until all nodes in N’

node

Now we check whether any
neighbors of x that are not in N’
can be reached with lower cost

path by first going through x

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N'": set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
0 u 2,U 5.u c0 00
1 ux 2.u -
2 D(v)
3 = min(D(v), D(x)+c(x,V))
4 =min(2, 1+2)
5 Loop
Findj & N's.t. D(j) is min
) Add jto N'

Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)*+c(.k))

Source 5 Until all nodes in N’

node

3 min: compute the updated
values of D(v), D(w), D(y)

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N'": set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
0 u 2,uU 5u 0 00
1 uXx 2,u 4,Xx —
2 D(w)
3 = min(D(w), D(x)+c(x,w))
4 = min(5, 1+3)
5 Loop
Findj & N's.t. D(j) is min
) Add jto N'

Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)*+c(.k))

Source 5 Until all nodes in N’

node

3 min: compute the updated
values of D(v), D(w), D(y)

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N'": set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
u 2,U 5u °0 °0
ux 2,u 4 x —

x is in N’, don’t update

O hOWN - O

Loop
Findj & N's.t. D(j) is min
3 Add jto N'
Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)*+c(.k))
3 Until all nodes in N

Source
node

3 min: compute the updated
values of D(v), D(w), D(y)

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N'": set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
0 u 2,uU 5u 0 00
1 ux 2.U 4 x — 2,X
2 D(y)
3 = min(D(y), D(x)*c(x,y))
4 =min(e~, 1+1)
) Loop
Find j & N's.t. D(j) is min
) Addjto N'

Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)*+c(.k))

Source 5 Until all nodes in N’

node

3 min: compute the updated
values of D(v), D(w), D(y)

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

p(k): predecessor node along path from source u to k
N': set of nodes whose least cost path is definitively known

Step N D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
0 u 2,uU 5,u 0 00
1 ux 2,u 4,x - 2,X
2 D(z): zis not a
3 neighbor of x so
4 don’t update
5

Now we know the lowest cost
5 path from u to y. Why?

Any other path from u to y must
go through neighbor of u but x is
lowest cost neighbor.

Source
node

And adding on cost from x to y
still gives lower (same) cost than
even to just go to other
neighbors of u.

Dijkstra’s algorithm

Step N’
u 2,U
ux 2.U
UXyvV

UXyVW

UXyvwz

o DhODN-_ O

5

Source
node

D(v),p(v) D(w),p(w) D(x),p(x)
5u
4 X

o TG

c(i,j): link cost from node i to node j

D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k

N'": set of nodes whose least cost path is definitively known

D(y),p(y) D(z),p(2)

(o 0]

C2x> =

Loop

Findj & N's.t. D(j) is min

Add jto N'

Update D(k) for all neighbors k & N' of j
D(k) = min(D(k), D(j)*+c(.k))

5 Until all nodes in N!

c(i,j): link cost from node i to node j

Dij kStra,S algorithm D(K): current cost from source u to destination node k

Step

o DhODN-_ O

Source
node

p(k): predecessor node along path from source u to k
N'": set of nodes whose least cost path is definitively known

N' D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
u 2,u o,u 0 o0
UX 2.U 4 x "IIIIII’ *
oy G 3 4y
UXyvw ‘
UXyvwz
1. Build shortest path 2. Build forwarding
tree from predecessor table at u
S nodes dst | link
5 v | (uyv)
X (u,x)
y | (ux)
w | (u,x)
Z | (uXx)

Algorithm complexity with n nodes

Each iteration: need to check all nodes not in N’
— n in 1stiteration, n-1 in 29 iteration, n-2 in 3" iteration ...
— n(n+1)/2 comparisons: O(n?), more efficient implementations possible

Network is dynamic
— link goes down: link state broadcast
— router goes down: remove link and all nodes recompute

Oscillations possible
— when congestion or delay-based link cost

initially ... recompute routing ... recompute
Need to prevent routers

from synchronizing

0 +e _
computations:
T 0 ‘0/ Have routers randomize
1 1+e when they send out link
T advertisements
X, y detect X, Y, z detect

better path to w better path to w

Control Plane
DISTANCE VECTOR ROUTING

Distance vector algorithm run at each node x

of nodes
Initialization Ngde x costto
Foralldsty e N g Xy z
T 02 7
if y is nbr of x S g X
O O Y] wow
else o
D,(y) = e * cost to
Y Nodey |x y z
For each nbrwand dsty e N X | © 0 oo
D,,(y) = = 5 yj2 0 1
= Z o0 o0 o @)
Send x’'s DV to all nbrs w .
_ . cost to
D, =[Du(y) :y € N] Nodez v z
= X | 00 o0 o0
2 1 g Y| o o
21710

I

Node x

cost to

cost to
Xy z

o0 o0 o0

Distance vector algorithm run at each node x

Initialization Loop
Forall dsty e N }
if y is nbr of x X waits for change in local link
D,(y) = c(Xx, y) cost or DV msg from neighbor
else l
Dy(y) = =

recompute estimates

For each nbr wand dsty e N D,(y) =min v {c(x,v)+ D,y)}
Dy(y) =

if xX's DV to any dst has

's DV | '
Send x’s DV to all nbrs w changed, notify neighbors

D, =[Dx(y) 1y € N]

Q: when does loop terminate?
When no more changes

D, (y) = min{c(x,y)+D,(y),
= min{2+0 , 7+1} 2

Node x

cost to

C(X,2)*D,(y)} Dy(z) = min{c(x,y)+Dy(z), c(x,2)+D,(2)}
=min{2+1, 7+0} =3

cost to
Xy z

o0 o0 o0

Xy z 5 1
x|02 7
Y2 0 1 7
Z|17 10
costto D,(x) =min{c(z,x)+D,(x), c(z,y)+D,(x)}
Xy Z =min{/+0, 142} =3
x|02 7
YI2 0
Z

Node x costto cost to
XYy Z XYy z
N - N .
= x(02 70 _ x{023)
g Y| oo o § Y2 0 1
Z|oooo oo Z\7 1 0
cost to
Nodey |x y z Xy z
X | 0 oo No change:
gy don’t send
- Z out DV
cost to
Node z X Yy z
X X102 7
5y Y2 0 1
Tz 2131 0

from
N <
w N

from

N <

from
N < X

cost to
Xy z

X

02 3
0 1
10

Node x

cost to

cost to
Xy z

Xy z

o0 o0 o0

No change:

don’t send
out DV

cost to
Xy z

2 7
0_1
1 0

W\N O

from

from

from

cost to
Xy z

No change:
don’t send
out DV

XV Z

No change:
don’t send
out DV

cost to
Xy z

No change:
don’t send
out DV

DONE

Node detects local link cost change

1. Updates routing info 1

2. Recalculates DV ? g 1
3. If DV changes, notify neighbors 20
Good news travels fast

t,: y detects link-cost change, updates its DV, informs its neighbors

t,. z receives update from y, updates its table, computes
new least cost to x, sends its neighbors its DV

t,: y receives z's update, updates its distance table. Y’s least
costs do not change, so y does not send a message to z

Bad news travels slow

Count to infinity problem
— 44 iterations before algorithm stabilizes

Intuitively

— when z tells y it has a path to x, y has no way of knowing that z is
using y on its path

cost to cost to
60 Yix y z YIXy z
1 x|0 4 3 x| 04 3
ﬁe Syl4a01 ™ 5 yls0 1
o0 ~ z|51 0 ~ z[510
3 min: Compute new D,(x) and D,(x) after change
Dy(x) = min{c(y,x)+D,(x), c(y,z) + D,(x)} .
= min{60+0, 1+5} = 6 Problem arises because y
— Routing Loop still expects z can get to x

D,(x) = min{c(z,x) + D,(x), c(z,y) + D,(x)} with cost of 5

= min{50+0 , 1+6} =7
=P Count-to-infinity

A proposed solution: poisoned reverse

If Z routes through Y to get to X
— Ztells Y its (Z’'s) distance to X is infinite (so Y won’t route to X via Z)

60 cost to
Y Xy z _
ﬁ1 x| 04 5 DyX)=min{c(y.x)+Dy(x), c(y.2)+D,(x)}
% £ yl40 1 = min{60+0, 1+:x} = 60
= Zlo1 O

Q: Will this completely solve count to infinity problem?
— no, only for 2 node loops

Another proposed solution: hold time
— don’t process route updates for period of time after route retraction

— ameliorates problem but does not solve

Distance vector routing summary

Easy to implement
— you will implement for hw9 :-)

Distributed
— X doesn’t compute paths in isolation
— requires route info (path costs) computed by neighbors

lterative

— X updates its DV whenever
 local link costs change
» DV update received from nbr

Asynchronous
— updates, exchanges happen asynchronously

Self-terminating
— X stops updating DV when no more changes received

Control Plane

LINK STATE VS. DISTANCE
VECTOR ROUTING

Message complexity n nodes
E links

Link state

— O(nE) messages sent

« every node floods its link state message out over every link in network
to reach every node

— smaller messages

* message size depends on the number of neighbors a node has
« any link change requires a broadcast

Distance vector

— # of messages depends on convergence time which varies
* nodes only exchange messages between neighbors

— larger routing update messages
* message size is proportional to the number of nodes in the network
« if link changes don't affect shortest path, no message exchange

Speed of convergence n nodes
E links

Link state

-1
— X i=n(n+1)2=0(n?)
« search through n-1 nodes to find min, recompute routes
 search through n-2 nodes to find min, recompute routes

— converges quickly but may have oscillations

« route computation is centralized
« a node stores a complete view of the network

Distance vector
— slow to converge and convergence time varies
« route computation is distributed
— may be routing loops, count-to-infinity problem

What happens if router malfunctions? " ?Oﬂes

Link state
— node can advertise incorrect link cost
— each node computes only its own table

Distance vector
— DV node can advertise incorrect path cost
— each node’s DV used by others: errors propagate through network

Both have strengths and weaknesses.
One or the other is used in almost every network

Internet Routing
OVERVIEW

From graph algorithms to routing protocols

Need to address Internet reality

1. Internet is network of networks
— hierarchical structure

— routers not all identical
« some routers connect different networks together

— each network admin may want to control routing in its own network

2. Scalability with billions of destinations
— don’t all fit in one routing table

— can’t exchange routing tables this big
« would use all link capacity

Scalable routing on the Internet

Aggregate routers into regions called Autonomous Systems

Autonomous Systems (AS)
aka domain
network under single administrative control
« company, university, ISP, ...
30,000+ ASes: AT&T, IBM, Wesleyan ...
each AS has a unique 16-bit AS #
* Wesleyan: AS167
« BBN: used to be AS1: was first org to get AS # then L3 later acquired

AS160
AS161
AS162
AS163
AS164
AS165
AS166
AS167
AS168
AS169

U-CHICAGO-AS - University of Chicago, US

TI-AS - Texas Instruments, Inc., US

DNIC-AS-00162 - Navy Network Information Center (NNIC), US
IBM-RESEARCH-AS - International Business Machines Corporation,
DNIC-AS-00164 - DoD Network Information Center, US
DNIC-AS-00165 - DoD Network Information Center, US

IDA-AS - Institute for Defense Analyses, US

WESLEYAN-AS - Wesleyan University, US

UMASS-AMHERST - University of Massachusetts, US
HANSCOM-NET-AS - Air Force Systems Networking, US

Hierarchical routing
2-level route propagation hierarchy

1. intra AS routing protocol between routers in same AS
 aka intra domain routing protocol
 aka interior gateway protocol
» each AS selects its own

Focus is performance

2. Inter AS routing protocol between gateway routers in different ASes
 aka inter domain routing protocol
« aka exterior gateway protocol Policy may dominate
* Internet-wide standard performance

Q: Can routers in different ASes run different
intra AS routing protocol?

Hierarchical routing

Forwarding table
= intra-AS sets entries for internal dsts

= nter-AS & intra-AS sets entries for
external dsts

Inter-AS
Routing
algorithm

Intra-AS
Routing
algorithm

Forwarding
table

Gateway router

= at edge of its own AS

= direct link to router in another AS
= perform inter-AS as well as intra-AS routing

= distributes results of inter-AS routing to other routers in AS

Example: set forwarding table in router 1d

AS1 learns (from inter-AS protocol)
— subnet x is reachable via AS3 (gateway 1c) but not via AS2

Router 1d learns (from intra-AS protocol)
— that its interface y is on least cost path to 1c.
— installs forwarding table entry (x,y)

AS3

Q: What if multiple ASes can be used to reach x?

INTERNET CONTROL
MESSAGE PROTOCOL

OVERVIEW

vumanfredi@wesleyan.edu

37

Internet Control Message Protocol (ICMP)

Used by hosts & routers to
communicate network-level
information

— error reporting

* unreachable host, network,
port, protocol

— echo request/reply
« used by ping)

— network-layer above IP
* ICMP msgs carried in IP pkts

ICMP message

— type, code plus first 8 bytes of
IP pkt causing error

Type Code Description

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable

dest network unknown
dest host unknown

source quench (congestion
control - not used)

A WWWWWwWw
ONOOWN-0

8 0 echo request (ping)
9 0 route advertisement
10 O router discovery

12 0 bad IP header

Traceroute and ICMP

Source sends series of segments \When ICMP msg arrives
or packets to destination — source records RTTs
— first set has TTL =1

— second set has TTL=2, etc.

— unlikely port number Stopping criteria
TCP segment or UDP datagram

When nth set arrives to nth router eventually arrives at dst host

_router discards and sends source | " dstreturns KEMP “port
ICMP message (type 11, code 0) unreachable” message

—ICMP message includes name of " Source stops

router & IP address

q 3 probe 3 probes D
3 probe

Q: why can traceroute work with segments, datagrams, or packets?

ICMP traceroute

We're generating an ICMP echo request

Intermediate routers
— respond with ICMP ttl expired

Final destination
— responds with ICMP echo reply

NETWORK PROGRAMMING

BIT-WISE OPERATIONS IN
PYTHON

Bit-wise operations on variables

X <<y
— returns x with bits shifted to left by y places
* new bits on right-hand-side are zeros
« same as multiplying x by 2Y
X >>y
— returns x with bits shifted to right by y places
« same as dividing x by 2Y

X&Yy
— does a bitwise and
« each bit of output is 1 if corresponding bit of x AND of y is 1, otherwise 0
~ X
— returns complement of x
* number you get by switching each 1 for 0 and each 0 for 1
E.g.,

— use to pack ip_version and ip header length into 8 bits

https://wiki.python.org/moin/BitwiseOperators
https://www.tutorialspoint.com/python3/bitwise operators example.htm

https://wiki.python.org/moin/BitwiseOperators
https://www.tutorialspoint.com/python3/bitwise_operators_example.htm

