Lecture 18: Network Layer Link State and Distance Vector Routing

COMP 332, Spring 2023 Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved as well as from slides by Abraham Matta at Boston University, and some material from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements

- homework 7
 - written due Wed., programming due next Wed.
 - please look at Linux virtual machine instructions and do set-up
 - come see me if any issues: we can also spend time at end of next class

2. Addressing

- usage in routing
- how to get an IP address

3. Control plane aka where routing happens

- overview
- link state routing
- distance vector routing

Takeaways from last time

Routing is done between blocks of addresses

not easy to route on graph with 2^32 nodes

Data plane vs. control plane

- data plane: your traffic (data) is forwarded here
- control plane: routers exchange information to set-up routes to be used in forwarding

Subnet part and host part of address

- a.b.c.d/x, where x is # of bits in subnet part
- 11001000 00010111 00010000 00000000

Addressing USAGE IN ROUTING

Routers forward traffic to networks not hosts

Forwarding table

- does not contain row for every dest IP address
- instead computes routes between subnets (blocks of addresses)

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through	0
11001000 00010111 00010111 11111111	O .
11001000 00010111 00011000 00000000	1
through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through	2
11001000 00010111 00011111 11111111	
otherwise	3

What if address ranges don't divide up nicely?

Longest prefix matching

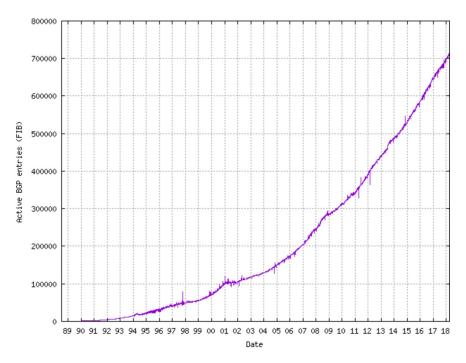
use longest address prefix that matches destination address

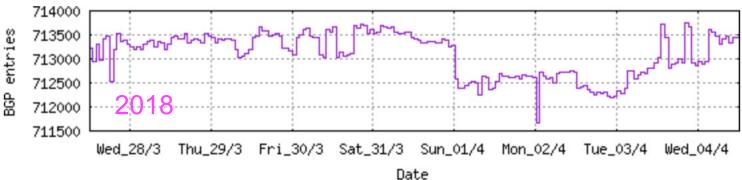
Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *******	2
otherwise	3

Question

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

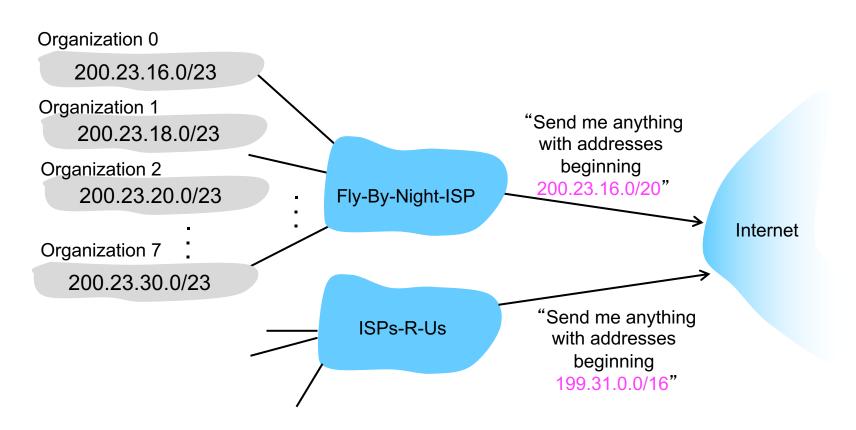

which interface? which interface?


How big is a routing table for a core router?

From http://www.cidr-report.org/as2.0/

Table History

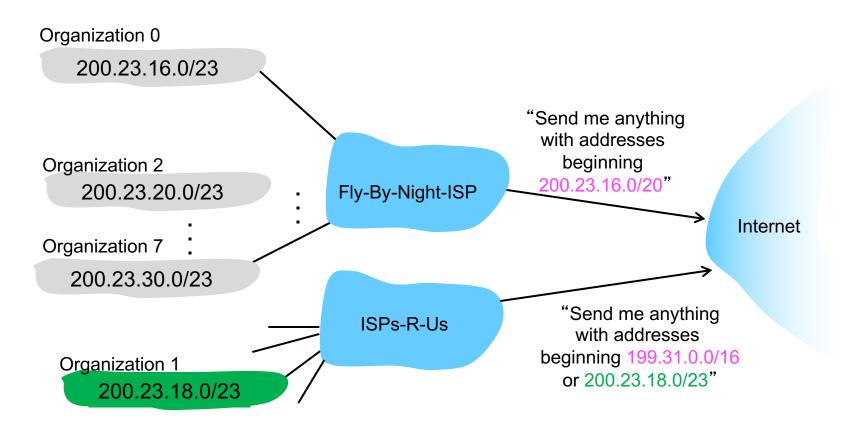
Date	Prefixes	CIDR Aggregated
28-03-18	713318	386580
29-03-18	713461	386983
30-03-18	713175	387365
31-03-18	713602	387141
01-04-18	713267	386331
02-04-18	712612	386192
03-04-18	712224	386045
04-04-18	712855	386936



Q: If a core router processes 1million pkts+ per second, how fast does it need to be able to search table?

Hierarchical addressing

Route aggregation


- combine multiple small prefixes into a single larger prefix
- allows efficient advertisement of routing information

Longest prefix matching

More specific routes

ISPs-R-Us has a more specific route to Organization 1

Addressing HOW TO GET AN IP ADDRESS?

How does ISP get block of addresses?

ICANN

- Internet Corporation for Assigned Names and Numbers
- <u>http://www.icann.org/</u>

ICANN functions

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes
- **—** ...

How does network get net part of IP address?

Allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	0001	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2		00010111	00010010	0000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
 Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

How does host get an IP address?

Option 1

hard-coded by system admin in a file on your host

Option 2:

- dynamically get address from a server
 - DHCP: Dynamic Host Configuration Protocol

We're running out of IPv4 addresses

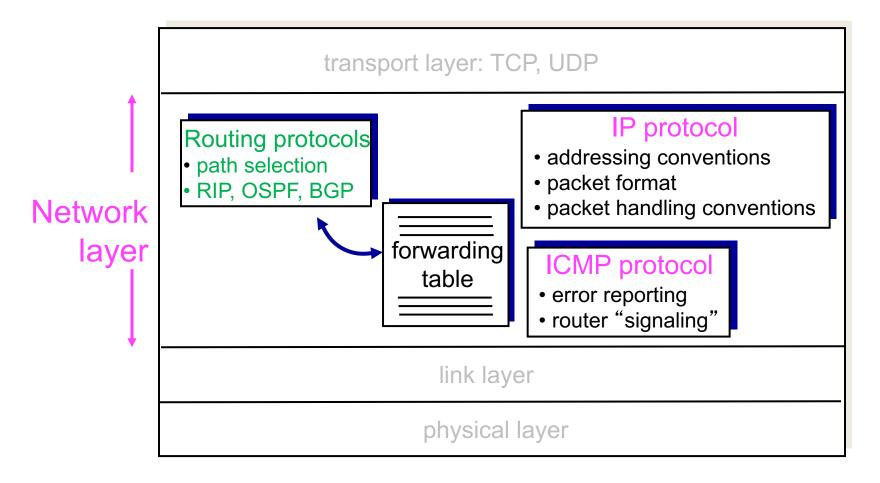
Why?

- inefficient use of address space
 - from pre-CIDR use of address classes (A: /8, B: /16, C: /24)
- too many networks (and devices)
 - Internet comprises 100,000+ networks
 - routing tables and route propagation protocols do not scale

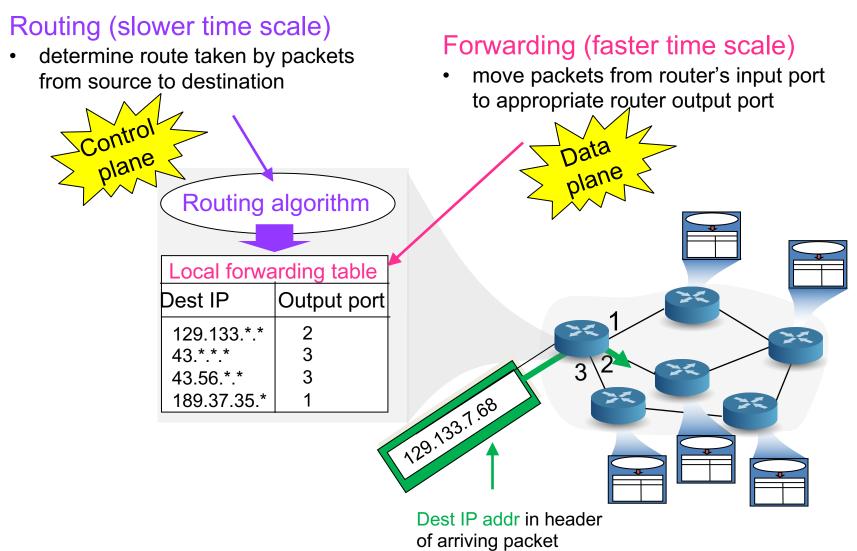
Q: how many IPv4 addresses are there?

 -2^{32}

Solutions


- IPv6 addresses
- DHCP: Dynamic Host Configuration Protocol
- NAT: Network Address Translation

Control Plane OVERVIEW


Internet's network layer

Network layer functions on hosts and routers

control plane vs. data plane

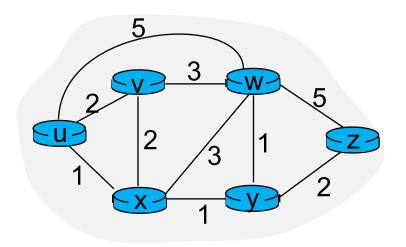
Control vs. data plane functions

How to get these routes?

Routing protocols

Goal

 determine "good" path from sending hosts to receiving host, through network of routers

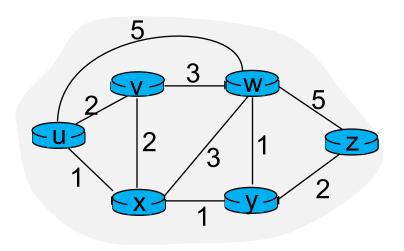

Path

 sequence of routers packets will traverse in going from given initial source host to given final destination host

"Good"

- least "cost", "fastest", "least congested", ...
- correctness constraints
 - no loops
 - no dead-ends

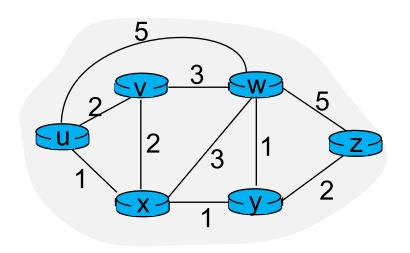
Abstract network as a graph



Graph: G = (N,E)

Q: What are the routers? I.e., nodes?

Q: What are the links? I.e., edges?


Abstract network as a graph


```
Graph: G = (N,E)
```

$$= set of links$$
= { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Link costs

$$c(x_i,x_j) = cost of link (x_i,x_j)$$

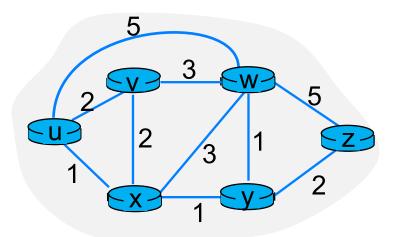
 $c(w,z) = 5$
What is cost $c(x,y)$?

Q: how to set cost?

- Always 1
- Related to bandwidth
- Inversely related to congestion
- Actual cost for ISP to use link
- ...

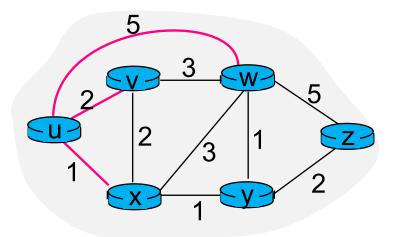
Q: What's the least-cost path between u and z?

$$c(u,x) + c(x,y) + c(y,z)$$


Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Routing algorithm: algorithm that finds least-cost path

Classifying routing algorithms


Global information

- global link state algorithms
- all routers have complete topology, link cost info
- exchange info only about neighbors but with all nodes

Local/decentralized information

- decentralized distance vector algorithms
- router knows only physically-connected neighbors, link costs to neighbors
- iterative computation
- exchange info about all nodes but only with neighbors

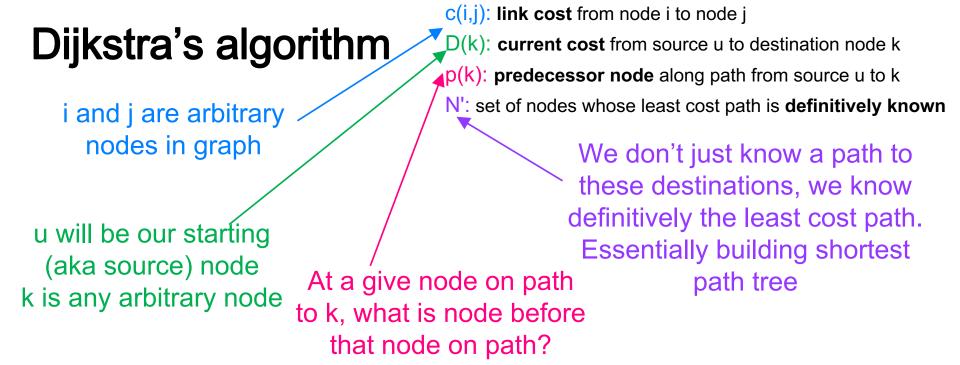
Both are used on Internet. First cover abstractly and then talk about specific Internet protocols (OSPF, BGP, RIP, ...)

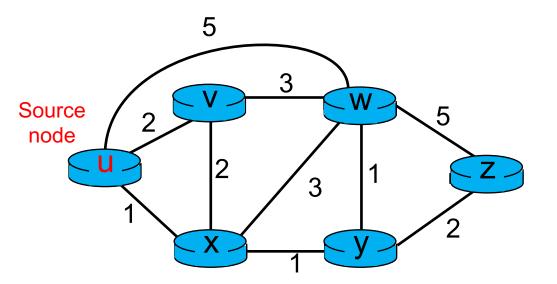
Control Plane LINK STATE ROUTING

Link state: i.e., network topology, link costs

- known to all nodes, accomplished via link state broadcast
 - msg about a node's neighbors sent to every other node in network
- all nodes have same global info

Computes least cost paths

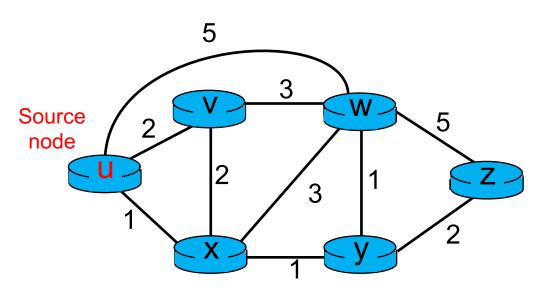

- from one "source" node to all other nodes
- obtain forwarding table for that node


Given path, put 1st hop

router for each dst in
forwarding table

Iterative

- after k iterations, know least cost path to k destinations
 - if n nodes, loop n times

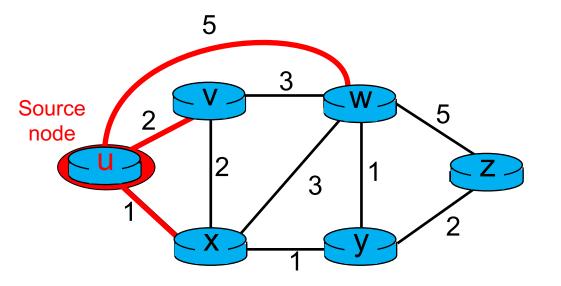


c(i,j): link cost from node i to node j

D(k): **current cost** from source u to destination node k

p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

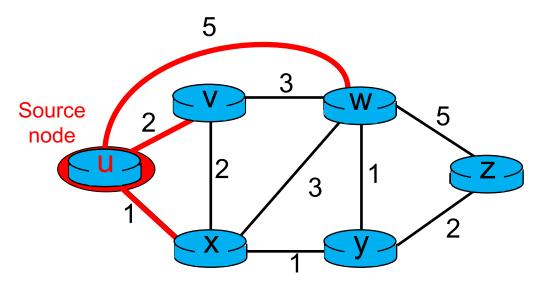


Initialization

c(i,j): link cost from node i to node j
D(k): current cost from source u to destination node k
p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u					
	1						
	2						
	3						
	4						
	5						


Initialization

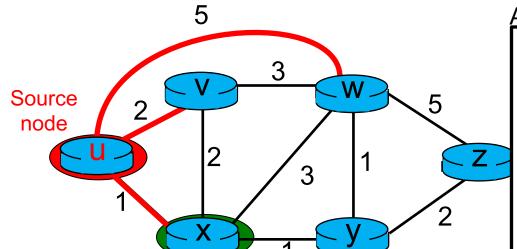
c(i,j): link cost from node i to node jD(k): current cost from source u to destination node k

p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	U	2,u	5,u	1,u	∞	∞
	1						
	2						
	3						
	4						
	5						

Initialization


c(i,j): link cost from node i to node j

D(k): **current cost** from source u to destination node k

p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux					
	2			x is not	in N', and D	(x) is lowes	t
	3						
,	4						
	5				l		

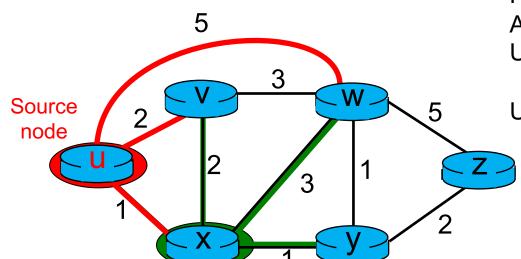
Loop

Find $j \notin \mathbb{N}'$ s.t. $\mathbb{D}(j)$ is min

<u>Add i to N'</u>

Now we know the *lowest cost* path from u to x. Why?

Any other path from u to x must go through *neighbor of u to get to x.* But we just looked at all neighbors of u


c(i,i): link cost from node i to node i

D(k): **current cost** from source u to destination node k

p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux					
2						
3						
4						
5				Loon		

Loop

Find $j \notin \mathbb{N}'$ s.t. $\mathbb{D}(j)$ is min

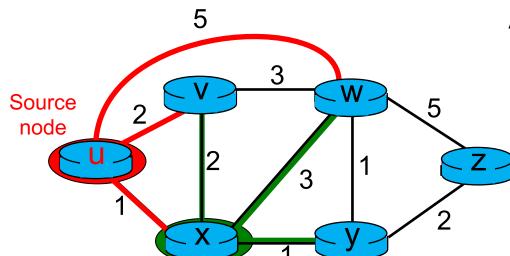
Add i to N'

Update D(k) for all neighbors k ∉ N' of j

$$D(k) = \min(D(k), D(j) + c(j,k))$$

Until all nodes in N'

Now we check whether any neighbors of x that are not in N' can be reached with lower cost path by first going through x


c(i,i): link cost from node i to node i

D(k): **current cost** from source u to destination node k

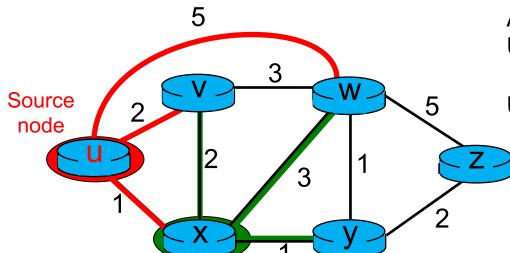
p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u				
	2		D(v)				
	3			(v), $D(x)+c(x,v)$))		
	4		= min(2,	1+2)			
	5				l oon		

Loop

Find j ∉ N' s.t. D(j) is min Add i to N' Update D(k) for all neighbors k ∉ N' of j $D(k) = \min(D(k), D(j) + c(j,k))$ Until all nodes in N'


c(i,i): link cost from node i to node i

D(k): **current cost** from source u to destination node k

p(k): predecessor node along path from source u to k

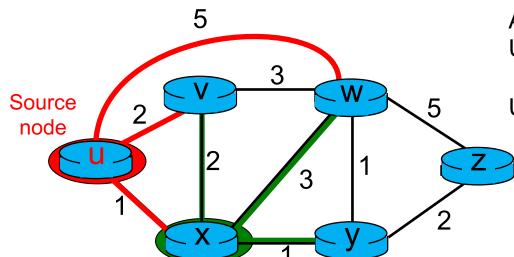
N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x			
	2			D(w)			
	3				D(x)+c(x,w)		
	4			= min(5, 1+	3)		
	5				Loon		

Loop

Find j ∉ N' s.t. D(j) is min Add i to N' Update D(k) for all neighbors k ∉ N' of j $D(k) = \min(D(k), D(j) + c(j,k))$

Until all nodes in N'


c(i,i): link cost from node i to node i

D(k): **current cost** from source u to destination node k

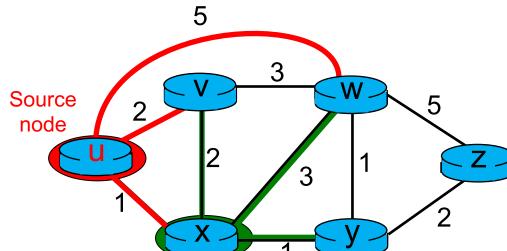
p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x			
2			,	k is in N', don't	update	
3						
4						
5				Loon		

Loop

Find j ∉ N' s.t. D(j) is min Add i to N' Update D(k) for all neighbors k ∉ N' of j $D(k) = \min(D(k), D(j) + c(j,k))$ Until all nodes in N'


c(i,i): link cost from node i to node i

D(k): **current cost** from source u to destination node k

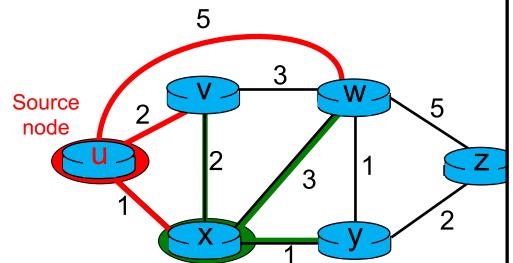
p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		2,x	
	2					D(y)	
	3					$= \min(D(y), D(y))$	x)+c(x,y))
	4					= min(∞, 1+1)	
	5				Loon		

Loop

Find j ∉ N' s.t. D(j) is min Add i to N' Update D(k) for all neighbors k ∉ N' of j $D(k) = \min(D(k), D(j) + c(j,k))$ Until all nodes in N'


c(i,j): link cost from node i to node j

D(k): **current cost** from source u to destination node k

p(k): **predecessor node** along path from source u to k

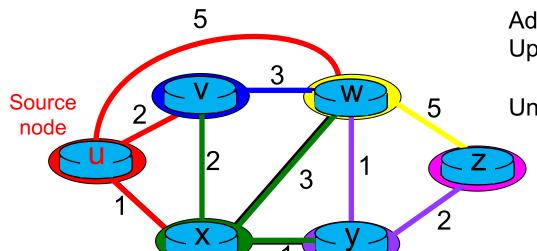
N': set of nodes whose least cost path is **definitively known**

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,x		2,x	
2						D(z): z is not a
3						neighbor of x so
4						don't update
5			Г			

Now we know the *lowest cost* path from u to y. Why?

Any other path from u to y must go through *neighbor of u but x is lowest cost neighbor.*

And adding on cost from x to y still gives lower (same) cost than even to just go to other neighbors of u.


c(i,j): link cost from node i to node j

D(k): **current cost** from source u to destination node k

p(k): predecessor node along path from source u to k

N': set of nodes whose least cost path is **definitively known**

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	U	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		(2,x)	∞
	2	uxy	2 ,u	3 ,y			4,y
	3	uxyv		3 ,y			4 ,y
	4	uxyvw					4 ,y
	5	uxyvwz			Loop		

Loop

Find $j \notin \mathbb{N}'$ s.t. $\mathbb{D}(j)$ is min

Add j to N'

Update D(k) for all neighbors k ∉ N' of j

 $D(k) = \min(D(k), D(j) + c(j,k))$

Until all nodes in N'

c(i,j): link cost from node i to node j

D(k): **current cost** from source u to destination node k

p(k): **predecessor node** along path from source u to k

N': set of nodes whose least cost path is **definitively known**

S	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux	2,u	4,x		(2,x)	∞
	2	uxy	2,u	3,y			4,y
_	3	uxyv		3 ,y			4 ,y
	4	uxyvw					4 ,y
	5	UXVVWZ					

1. Build shortest path tree from predecessor nodes Source node 1. Build shortest path tree from predecessor nodes

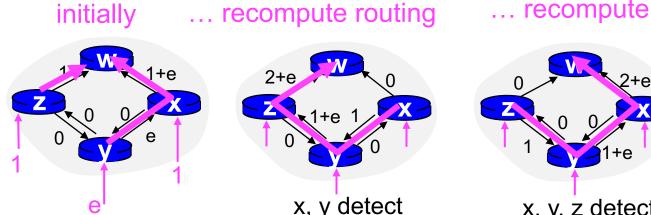
2. Build forwarding table at u

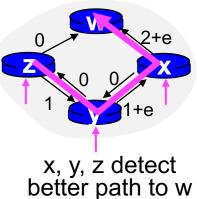
dst	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Algorithm complexity with n nodes

Each iteration: need to check all nodes not in N'

- n in 1st iteration, n-1 in 2nd iteration, n-2 in 3rd iteration ...
- n(n+1)/2 comparisons: $O(n^2)$, more efficient implementations possible


Network is dynamic


- link goes down: link state broadcast
- router goes down: remove link and all nodes recompute

Oscillations possible

when congestion or delay-based link cost

better path to w

Need to prevent routers from synchronizing computations:

Have routers randomize when they send out link advertisements