
Wesleyan University, Spring 2023, COMP 332

Homework 6: TCP, UDP, and IP addressing

Due by 11:59pm on April 12, 2023

1. Written problems (10 points)

Problem 1. Hosts A and B are communicating over a TCP connection. Host B has already re-
ceived from A all bytes up through byte 248. Suppose Host A then sends two segments to Host B
back-to-back. The first and second segments contain 40 and 60 bytes of data respectively. In the
first segment, the sequence number is 249, the source port number is 503, and the destination port
number is 80. Host B sends an acknowledgement whenever it receives a segment from Host A.

a: In the second segment sent from Host A to Host B, what are the sequence number, source
port number, and destination port number?

b: Suppose the first segment arrives before the second segment. Host B sends an acknowl-
edgement in response to the first segment: what is the acknowledgment number, the source
port number, and the destination port number?

c: Suppose the second segment arrives before the first segment. Host B sends an acknowl-
edgement in response to the first segment. What is the acknowledgement number?

d: Suppose the two segments sent by A arrive in order at B. The first acknowledgement is
lost and the second acknowledgement arrives after the first timeout interval. Draw a tim-
ing diagram, showing these segments and all other segments and acknowledgements sent.
(Assume there is no additional packet loss.) For each segment in your figure, provide the
sequence number and the number of bytes of data. For each acknowledgement that you
add, provide the acknowledgement number.

Solution:

a: The sequence number is 289, the source port number is 503 and the destination port num-
ber is 80.

b: The acknowledgement number is 289, the source port number is 80 and the destination
port number is 503.

c: The acknowledgement number is 249, indicating that Host B is still waiting for bytes 249
and onwards.

d: See Figure 1.

1



2 SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING

Figure 1. Solution to question 1(d).

Problem 2. Figure 2 plots the TCP window size over time for TCP reno. Using Figure 2, answer
the following questions.

a: Identify the transmission rounds when TCP slow start is operating.

b: Identify the transmission rounds when TCP congestion avoidance is operating.

c: Identify the transmission rounds when TCP fast retransmit is operating.

d: After round 15, is segment loss detected by a triple duplicate ACK or a timeout?

e: After round 27, is segment loss detected by a triple duplicate ACK or a timeout?

f: What is the value of ssthresh at the first transmission round?

g: What is the value of ssthresh at the 16th transmission round?

h: What is the value of ssthresh at the 19th transmission round?

i: What is the value of ssthresh at the 28th transmission round?

j: During what transmission round is the 61st segment transmitted?

Solution:



SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING 3

Figure 2. TCP congestion window size over time for TCP Reno.

a: Rounds 1 through 7, Rounds 28 through 29.

b: Rounds 8 through 15, Rounds 19 through 27.

c: Rounds 16 through 18.

d: Triple duplicate ack.

e: Timeout.

f: ssthresh = 64.

g: ssthresh = 36.

h: ssthresh = 36.

i: ssthresh = 44/2 = 22.

j: Sent during round 6.

Round 1: Segment 1 sent.

Round 2: Segments 2, 3 sent.

Round 3: Segments 4, 5, 6, 7 sent.

Round 4: Segments 8, 9, 10, 11, 12, 13, 14, 15 sent.

Round 5: Segments 16 through 31 sent.

Round 6: Segments 32 through 63 sent.

Problem 3. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet
3. Suppose all of the interfaces in each of these three subnets are required to have the prefix



4 SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING

223.1.17/24. Also suppose that Subnet 1 is required to support up to 70 interfaces, and Subnet 2
and 3 are each required to support up to 60 interfaces. Provide three network addresses (of the
form a.b.c.d/x) that satisfy these constraints.

Solution:

223.1.17.0/25

223.1.17.128/26

223.1.17.192/26

Problem 4. Open wireshark. While recording traffic, open www.nytimes.com. Once the webpage
has loaded, stop recording traffic and enter the filter ip.addr == 151.101.117.164, which is the
IP address for www.nytimes.com.

a: Choose a packet sourced from www.nytimes.com that contains actual data sent by the
nytimes server. Take a screenshot of the packet, with the IP header expanded and making
sure to include the Transmission Control Protocol line.

b: How many bytes are in the IP header for the packet in part (a)? How many bytes are in
IP packet? List all of the fields you see in the IP header and the number of bytes used by
each field.

c: How many bytes are in the TCP header for the TCP segment contained in the packet in
part (a)? How many bytes are in the TCP segment?

d: For the traffic you have recorded, which IP header fields change from one packet to the next?

Solution:

a: Packet is shown in Figure 3.

b: The IP header length is 20 bytes and the IP packet length is 1420 bytes. The fields in the
IP header are as follows.

Version (4 bits = 0.5 bytes).

Header length (4 bits = 0.5 bytes).

Differentiated services (8 bits = 1 byte).

Total length (16 bits = 2 bytes).

Identification (16 bits = 2 bytes)

Flags (3 bits).

Fragment offset (13 bits).

Time-to-live (8 bits = 1 byte).

Protocol (8 bits = 1 byte).

Header checksum (16 bits = 2 bytes).

Source IP address (32 bits = 4 bytes).

Destination IP address (32 bits = 4 bytes).



SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING 5

Figure 3. Packet from nytimes.

c: TCP header length is 32 bytes. TCP segment length is 32 + 1368 = 1400 bytes. The TCP
segment length plus the IP header of 20 bytes should give the IP length of 1420 bytes.

d: Total length, Identification, TTL, Header checksum. If you have packets from different
flows, you’ll also see Source IP address and Destination IP address changing.

2. Coding and hands-on problems (10 points)

You have two options for coding on this homework: you should choose one of the options. Option
1 is an individual project implementing a UDP ping application. Option 2 is a group project for
two people updating your chat application from the last homework to run over UDP. If you choose
Option 2, please email me to let me know, and also let me know with whom you are working. More
details below.



6 SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING

>python3 udp_client.py localhost 55555

[’udp_client.py’, ’localhost’, ’55555’] 3

Reply from 127.0.0.1: PING 0 WED APR 4 14:01:01 2018

RTT: 0.009649038314819336

Reply from 127.0.0.1: PING 1 WED APR 4 14:01:01 2018

RTT: 0.001322031021118164

Reply from 127.0.0.1: PING 2 WED APR 4 14:01:01 2018

RTT: 0.0014090538024902344

Request timed out.

Request timed out.

Request timed out.

Reply from 127.0.0.1: PING 6 WED APR 4 14:01:13 2018

RTT: 0.002029895782470703

Reply from 127.0.0.1: PING 7 WED APR 4 14:01:13 2018

RTT: 0.001703023910522461

Reply from 127.0.0.1: PING 8 WED APR 4 14:01:13 2018

RTT: 0.0016598701477050781

Request timed out.

Figure 4. Example output for UDP ping client.

Option 1: Individual project implementing a UDP ping application. In Option 1 you
will create a UDP ping application. The ping server will create a UDP socket, bind it to port
50007, and then wait for client messages. The ping client will open a UDP socket and send a short
message to the server that the server echoes back to the client. The ping client will record the
time from when its message is generated until when it receives a message back, and will print this
information out. The ping client will send 10 of these messages. Example client output is shown in
Figure 4. There is no code distribution for this homework, however, please split your code into 2
files that you will submit: udp client.py and udp server.py. Because the channel between 2 pro-
cesses on the same device isn’t very noisy, to experiment with loss, you should add some code to the
server that randomly does not respond to ping messages that it receives (i.e., “drops” the message).

You may wonder why we don’t try the ping client out on a real website: I encourage you to do
this and you’ll soon realize that there is no process waiting for UDP connections on most servers
on any ports. Instead, as we saw in class, in practice, ping and traceroute rely on the generation of
ICMP packets in response to the query that was generated (whether the query was generated over
UDP or TCP). However, because ICMP (and IP) headers belong to the network layer, there is no
socket for these packets to go to: if we want to look at or generate IP or ICMP packets we must
use what is called a raw socket. Homework 7 will use raw sockets to do exactly this.

Notes:

• For more on sockets, look here https://docs.python.org/3/library/socket.html. Re-
call that a UDP socket is of type SOCK DGRAM.

• If you use the chrome browser, you may need to turn off the use of QUIC: to do so you
will need to go to chrome://flags/ in your browser. Otherwise you may see QUIC traffic
instead of UDP traffic. QUIC is a transport layer protocol developed by Google.



SPRING 2023, COMP 332, HOMEWORK 6: TCP, UDP, AND IP ADDRESSING 7

• The command line tool, nmap is very powerful, and one of its capabilities is to send a UDP
ping. Eg., try out the command sudo nmap -P0 -sU -p55555 www.wesleyan.edu. To
find out more about nmap, type man nmap in a terminal.

Option 2: group project for two people updating your chat application from the
last homework to run over UDP. In Option 2, you will update your chat application from
homework 5 to run over UDP rather than TCP. This will require some thought to redesign the
code. Because the channel between 2 processes on the same device isn’t very noisy, to experiment
with loss, you should add some code to the server that randomly does not respond to ping messages
that it receives (i.e., “drops” the message): you should implement a simple timeout and retransmit
on the client side to recover from these drops. You and your partner should test out your code with
two clients running on different machines: to do this, you may need to check that the ports being
used on each machine are accessible to external connecitons.

3. Submission

Submit your written work as hw6.pdf and your *.py files to the Google Drive directory I have
created for you named comp332-s23-USERNAME/hw6/. You should replace USERNAME with your
Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.

You should not submit hw4.h or any test or driver programs. When we test your code, we will
add in our copy of hw4.h and our own testing program. In particular, if you change hw4.h in order
to make your code compile, then your code will probably fail to compile with our hw4.h, and hence
you will receive little to no credit for the coding portion of this assignment.


