Lecture 9: Transpor Layer
Overview and UDP

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— homework 4 due Wed. at 11:59p

2. Transport layer
— overview
— multiplexing and demultiplexing
— User Datagram Protocol (UDP)

3. Reliable data transport
— principles
— protocol v1.0

Transport Layer
OVERVIEW

Why do we need a transport layer?

* Logical communication

- - between processes on
Application end hosts
Transport / Relieson, enhances,
network layer services
Network , o
\ * Logical communication
Link between end hosts
* |P header does not contain
Physical port #s

4

What problems must transport
layer address?

application
< (- DU
(o)
phy
network
netww . data link |
data lin hysical |%
physical
ork -
K -
@
@I p
& q network [\
& ey data link
e [
(_hetworky e
data link [\e
=nhysical
network
data link
] physical o rorc]
T g data link
q - physical
T gt ‘é
S

Sz

5y

tio
networ
data link
physical

Why do we need a transport layer?
Transport layer services

Problem 1
— no port #s in IP header How do packets get from
host to process on host?
= (De)Multiplexin
Problem 2 (De) P J

duplicated, reordered, delayed to deal with

— |IP is best effort
» packets can be corrupted, dropped, Pain for app developer
—Reliable data transfer

Problem 3

— |P gives no guidance about rate at Traffic can easily
which to send pac‘fets o | overwhelm network, host
* sends whatever it receives immediately Congestion Flow control

Problem 4 Pain for app developer
— IP packets need to be reassembled to deal with

into original message — Data stream

Why do we need a transport layer?
Transport layer services

Problem 1
— no port #s in IP header

ow do packets get fro
host to process on host?

= (De)Multiplexing

Only service transport

Problem 2 layer MUST provide
— |P is best effort
 packets can be corrupted, dropped, Pain for app developer
duplicated, reordered, delayed to deal with
—Reliable data transfer
Problem 3

— |P gives no guidance about rate at

Traffic can easil
which to send packets y

overwhelm network, host

* sends whatever it receives immediately Congestion Flow control
Problem 4 Pain for app developer
— |P packets need to be reassembled to deal with

into original message — Data stream

Why do we need a transport layer?
Transport layer services

Problem 1
— no port #s in IP header How do packets get from
host to process on host?
Only service transport (De)Multiplexing
Problem 2 layer MUST provide UDP. TCP

duplicated, reordered, delayed to deal with
Reliable data transfer

Problem 3 TCP

— |P gives no guidance about rate at Traffic can easily
which to send pac‘fets o | overwhelm network, host
* sends whatever it receives immediately Congestlon Flow control

TCP

Problem 4 Pain for app developer
— IP packets need to be reassembled to deal with

into original message — Data stream
TCP

— |IP is best effort
» packets can be corrupted, dropped, Pain for app developer
—

Transport layer protocols on Internet

TCP:

reliable, in-order delivery
connection-oriented
congestion control

flow control

connection setup

<&

application

phy

data lin

UDP: unreliable, unordered delivery &

— no-frills extension of best-effort IP

Q: What services are not available

connectionless

— delay guarantees
— bandwidth guarantees

o

)

netwls

physical W

(o)

network
data link
hysical

"t 'ml

~Sawork
k

@

p

network [\
“ data link
g physEaI
(_hetworky e
data link [\e
==hysical
network
data link
] physical o rorc]
T = data link
- physical
%y \ S

“ 5L

tio
networ
data link
physical

Transport Layer

MULTIPLEXING AND
DEMULTIPLEXING

Transport layer

Provides

— logical communication
between app processes
running on different hosts

Transport protocols run in
end systems

— send side

* breaks app messages
into segments (TCP)
datagrams (UDP)

« passes to network layer
— rcv side

* reassembles segments
or datagrams into
messages

« passes to app layer

—— Household analogy

12 kids in Alice’s house sending
letters to 12 kids in Bob’s house

hosts = houses
processes = kids

app messages = letters in
envelopes

transport protocol = Ann and Bill
who demux to in-house siblings

network-layer protocol = postal
service

Multiplexing and demultiplexing

Determines which packets go to which app

Mux at sender

Handle data from multiple _ Demux at receiver _

sockets, add transport header Use header info to deliver

(later used for demultiplexing) received segments to correct
socket

application

application

application socket

O process

transport

network
link
physical

How demultiplexing works

Host receives |P packets

— packet header contains
e source IP address
» destination IP address

32 bits -

source port # dest port #

— packet pay|oad is other header fields
* one transport-layer segment or
datagram
— transport-layer header contains application
» source port number data
» destination port number (payload)
Host uses IP addresses & port
. P Format of TCP/UDP
numbers to direct segment to
segment/datagram

appropriate socket

Connectionless demultiplexing (UDP)

Recall

— created socket has random host-local port # allocated:
sockl = socket (AF INET,SOCK DGRAM)
port# allocated:9157

— when creating datagram to send into UDP socket, must specify
« destination IP address
» destination port #

When host receives UDP

datagram IP packets with same destination
. checks destination port # in - IP and port #, but different source
UDP header on datagram |P addresses and/or source port

numbers: will still be directed to

e directs UDP dat t
directs U datagram to same socket at destination

socket with that port #

Connectionless demultiplexing (UDP)

sock?2 =
socket (AF INET,
SOCK_DGRAM)

Port# allocated:9157

application

server sock =

socket (AF INET,
SOCK DGRAM)

sockl =

server sock.bind ((socket (AF INET,
localhost, 6428)) SOCK_ DGRAM)

application

PD

44 1m

source port: 6428
dest port: 9157

s

Port# allocated:5775

application

source port: ?
dest port: ?

\ 4

source port: 9157
dest port: 6428

a

source port: 7 (): what are missing

dest port: ?

src/dst ports?

Connection-oriented demultiplexing (TCP)

TCP socket identified by 4-tuple Server host

— source IP address — may support many
— source port number simultaneous TCP sockets
— dest |P address — each socket identified by

— dest port number its own 4-tuple

Web servers

— have different sockets for
each connecting client

— non-persistent HTTP will
have different socket for
each request

Demux

— receiver uses all four values to
direct segment to appropriate
socket

Connection-oriented demultiplexing (TCP)

application

application application
P3D ireere:
-| 1 |l an port Ll u _ u
trangpor brk ranspo
netyork lilk network
link ical link -
J phypical server:|P physical
- address B S
host: IP source IP,port: B,80 ”_c host: IP
address A dest IPport: A9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A, 9157
dest IP, port: B,80

source IP,port: C,9157
dest IP,port: B,8_O

3 segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Connection-oriented demultiplexing (TCP)

threaded server

application

application P4 application
et
‘Eranqport [T,
etwbrk Transport
lirlk network
hydical link e
server:|P physical
address B g
host: IP source IP,port: B,80 ”_c host: IP
address A dest IPport: A9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A, 9157 -
dest IP, port: B,80

source IP,port: C,9157
dest IP,port: B,80

Transport Layer
USER DATAGRAM PROTOCOL

UDP: User Datagram Protocol [RFC 768]

No frills Internet transport protocol

— best effort service, UDP segments may be
* lost
 delivered out-of-order to app

— reliable transfer over UDP
 add reliability at application layer
« application-specific error recovery!

— UDP uses

« streaming multimedia apps (loss tolerant, rate sensitive)
« DNS, SNMP

Connectionless
— no handshaking between UDP sender, receiver
— each UDP segment handled independently of others

UDP datagram header

length, in bytes of
UDP datagram,
including header

32 bits

source port #
length 4|

checksum

__ Why is there a UDP?

— NO connection

application establishment (which can
data add delay)
(payload) — simple: no connection

state at sender, receiver
— small header size

— no congestion control:
UDP datagram format UDP can blast away as

fast as desired

UDP error detection vs. recovery

Errors
— not just introduced during transmission over links
— can be introduced in memory, at router, at lower layer

UDP does not provide error recovery
— may drop datagram
— may pass datagram data to app with warning

UDP does provide error detection

— it's useful to know something damaged even if don't fix
— Q: How?
* Checksum

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in
transmitted datagram

Sender
1.

Views datagram contents,
including header fields and
user data, as sequence of
16-bit integers

 skip checksum field

Computes checksum

« adds 16-bit integers together
using 1s complement
arithmetic and then takes 1s
complement of result

Puts checksum value in UDP
checksum field

Receliver
1.

Computes its own checksum
over datagram including
checksum in UDP header

Result should equal all Os if
no errors

 NO: error detected
* YES: no error detected
 Q: can there still be errors?

Internet checksum example

Example: add two 16-bit integers

oo T

O-
1110 11001100110
1101 1 0101010101

wraparound@lOll101110111011

sum 101110111011 1100
checksum 01 0001000100001 1

Note: when adding numbers, a carryout from the most significant
bit needs to be added to the result

Q: Why 1s complement? Why check for 0s? ~ Summing these

— for efficiency: computed very fast in hardware should give 0
— independent of machine endianness

Looking at UDP in Wireshark

» Frame 237: 143 bytes on wire (1144 bits), 143 bytes captured (1144 bits) on ir
| » Ethernet II, Src: JuniperN_1e:18:01 (3c:8a:b0:1e:18:01), Dst: 78:4f:43:73:43::
» Internet Protocol Version 4, Src: intdns.wesleyan.edu (129.133.52.12), Dst: wvn
v User Datagram Protocol, Src Port: 53 (53), Dst Port: 57332 (57332)

Source Port: 53

Destination Port: 57332

Length: 109

v Checksum: 0x0f73 [validation disabled]

[Good Checksum: Falsel
[Bad Checksum: Falsel]

[Stream index: 1]

» Domain Name System (response)

78 4f 43 73 43 26 3c 8a b0 1le 18 01 08 00 45 00 xXO0CSC&<. vuuuss E.
00 81 87 f4 00 00 3e 11 01 b3 81 85 34 0c 81 85 > sansdasn
0020 bb ae 00 35 df f4 00 6d Of 73 e6 72 81 80 00 01 ...5...m .S.r....
00 01 00 00 00 00 03 32 32 37 03 31 39 30 02 33 2 27.190.3
33 02 31 33 07 69 6e 2d 61 64 64 72 04 61 72 70 3.13.1in- addr.arp
61 00 00 Oc 00 01 cO Oc 00 Oc 00 01 00 01 51 8d Quusssss sununas Q.
00 2d 14 73 65 72 76 65 72 2d 31 33 2d 33 33 2d .-.serve r-13-33-

31 39 30 2d 32 32 37 85 62 6f 73 35 30 01 72 Qa 190-227. bos50.r.
63 6¢c 6f 75 64 66 72 6f 6e 74 03 6e 65 74 00 cloudfro nt.net.

Reliable Data Transport
PRINCIPLES

Why can’t we do the following?

Sender Receiver
Send Receive

Because Internet is unreliable channel
Packets can be corrupted, duplicated, reordered, delayed, lost

Q: What can we do?

Principles of reliable data transfer

Important in application, transport, link layers
« top-10 list of important networking topics!

sending receiver I
process I process
| 1

I>()re|i<:1ble Ch(:mnel)1

application
layer

transport
layer

(a) provided service

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

Important in application, transport, link layers
« top-10 list of important networking topics!

sending receiver I
process I process
| 1

I>()re|i<:1ble Ch(:mnel)1

application
layer

transport
layer

tbOunreIicubIe chonnel)i

(0) provided service (b) service implementation

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer

Important in application, transport, link layers
« top-10 list of important networking topics!

senalngl receiver I
process process
|)

. rdt send()
L()relloble Ch(:mnel)1 =

application
layer

deliver data()

=
8_ o) reliable data reliable data
D > transfer protocol transfer protocol
% O (sending side) (receiving side)
= udt send()t [packet | [packet| Irdt_rcv 0
tbOunreIicubIe chonnel)i
(a) provided service (b) service implementation

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

rdt send () : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side)

send
side

deliver data() : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

fransfer protocol

relioble data receive

(receiving side) side

udt_send ()} [packe

packet Irdt_rcv ()

1‘-hOunreIiabIe channel)J

udt send () : called by rdt,

to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Reliable data transfer: getting started

Our plan
— incrementally develop
» sender, receiver sides of reliable data transfer protocol (rdt)

— consider only unidirectional data transfer
* but control info will flow in both directions!

— use finite state machines (FSM) to specify sender, receiver

Event causing state transition
Actions taken on state transition

/ \

State: when in this
state, next state is
uniquely determined
by next event

Event
Actions

Reliable Data Transport
PROTOCOL V1.0

rdt1.0: reliable transfer over a reliable channel

Underlying channel perfectly reliable

— no bit errors
— no loss of packets

Separate FSMs for sender, receiver:
— sender sends data into underlying channel
— receiver reads data from underlying channel

Wait for rdt_send(data) rdt_rcv(packet)

call from
above

extract (packet,data)
deliver_data(data)

packet = make_pkt(data)
udt_send(packet)

sender receiver

Reliable Data Transport
PROTOCOL V2.0

rdt2.0: channel with bit errors

Underlying channel may flip bits in packet
— checksum to detect bit errors
— Q: how to recover from errors?

How do humans recover from “errors”
during conversation?

rdt2.0: channel with bit errors

Underlying channel may flip bits in packet
— checksum to detect bit errors
— Q: how to recover from errors?

Acknowledgements (ACKSs)

— receiver explicitly tells sender that pkt received OK

Negative acknowledgements (NAKS)
— receiver explicitly tells sender that pkt had errors
— sender retransmits pkt on receipt of NAK

New mechanisms in rdt2.0 (beyond rdt1.0)

— error detection
— feedback
 control msgs (ACK,NAK) from receiver to sender

Continue rdt2.0 next lecture

vumanfredi@wesleyan.edu

37

