
Lecture 9: Transpor Layer
Overview and UDP

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7th edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material

from Computer Networks by Tannenbaum and Wetherall.

1. Announcements
– homework 4 due Wed. at 11:59p

2. Transport layer
– overview
– multiplexing and demultiplexing
– User Datagram Protocol (UDP)

3. Reliable data transport
– principles
– protocol v1.0

vumanfredi@wesleyan.edu 2

Transport Layer

vumanfredi@wesleyan.edu 3

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

Physical

Transport

Network

Link

Application
• Logical communication

between processes on
end hosts

• Relies on, enhances,
network layer services

• Logical communication
between end hosts

• IP header does not contain
port #s

What problems must transport
layer address?

vumanfredi@wesleyan.edu 4

Problem 1
– no port #s in IP header

Problem 2
– IP is best effort

• packets can be corrupted, dropped,
duplicated, reordered, delayed

Problem 3
– IP gives no guidance about rate at

which to send packets
• sends whatever it receives immediately

Problem 4
– IP packets need to be reassembled

into original message

Pain for app developer
to deal with

Traffic can easily
overwhelm network, host

Pain for app developer
to deal with

How do packets get from
host to process on host?

Transport layer services

⇒Reliable data transfer

⇒ Congestion, Flow control

⇒ Data stream

⇒ (De)Multiplexing

vumanfredi@wesleyan.edu 5

Problem 1
– no port #s in IP header

Problem 2
– IP is best effort

• packets can be corrupted, dropped,
duplicated, reordered, delayed

Problem 3
– IP gives no guidance about rate at

which to send packets
• sends whatever it receives immediately

Problem 4
– IP packets need to be reassembled

into original message

Pain for app developer
to deal with

Traffic can easily
overwhelm network, host

Pain for app developer
to deal with

How do packets get from
host to process on host?

Transport layer services

⇒Reliable data transfer

⇒ Congestion, Flow control

⇒ Data stream

⇒ (De)MultiplexingOnly service transport
layer MUST provide

vumanfredi@wesleyan.edu 6

Problem 1
– no port #s in IP header

Problem 2
– IP is best effort

• packets can be corrupted, dropped,
duplicated, reordered, delayed

Problem 3
– IP gives no guidance about rate at

which to send packets
• sends whatever it receives immediately

Problem 4
– IP packets need to be reassembled

into original message

Pain for app developer
to deal with

Traffic can easily
overwhelm network, host

Pain for app developer
to deal with

How do packets get from
host to process on host?

Transport layer services

⇒Reliable data transfer

⇒ Congestion, Flow control

⇒ Data stream

⇒ (De)MultiplexingOnly service transport
layer MUST provide UDP, TCP

TCP

TCP

TCPvumanfredi@wesleyan.edu 7

TCP: reliable, in-order delivery
– connection-oriented
– congestion control
– flow control
– connection setup

UDP: unreliable, unordered delivery
– connectionless
– no-frills extension of best-effort IP

Q: What services are not available
– delay guarantees
– bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

vumanfredi@wesleyan.edu 8

Transport Layer

vumanfredi@wesleyan.edu 9

Provides
– logical communication

between app processes
running on different hosts

Transport protocols run in
end systems

– send side
• breaks app messages

into segments (TCP)
datagrams (UDP)

• passes to network layer
– rcv side

• reassembles segments
or datagrams into
messages

• passes to app layer

12 kids in Alice’s house sending
letters to 12 kids in Bob’s house
• hosts = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Ann and Bill

who demux to in-house siblings
• network-layer protocol = postal

service

Household analogy

vumanfredi@wesleyan.edu 10

process

socket

Use header info to deliver
received segments to correct
socket

Demux at receiver
Handle data from multiple
sockets, add transport header
(later used for demultiplexing)

Mux at sender

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4
transport

application

physical
link

network

P3

Determines which packets go to which app

11vumanfredi@wesleyan.edu

Host receives IP packets
– packet header contains

• source IP address
• destination IP address

– packet payload is
• one transport-layer segment or

datagram
– transport-layer header contains

• source port number
• destination port number

Host uses IP addresses & port
numbers to direct segment to

appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

Format of TCP/UDP
segment/datagram

vumanfredi@wesleyan.edu 12

Recall
– created socket has random host-local port # allocated:

sock1 = socket(AF_INET,SOCK_DGRAM)

port# allocated:9157

– when creating datagram to send into UDP socket, must specify
• destination IP address
• destination port #

When host receives UDP
datagram

• checks destination port # in
UDP header on datagram

• directs UDP datagram to
socket with that port #

IP packets with same destination
IP and port #, but different source
IP addresses and/or source port
numbers: will still be directed to

same socket at destination

vumanfredi@wesleyan.edu 13

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

server_sock =
socket(AF_INET,
SOCK_DGRAM)
server_sock.bind((
localhost,6428))

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

sock2 =
socket(AF_INET,
SOCK_DGRAM)
Port# allocated:9157

sock1 =
socket(AF_INET,
SOCK_DGRAM)
Port# allocated:5775

Q: what are missing
src/dst ports?vumanfredi@wesleyan.edu 14

TCP socket identified by 4-tuple
– source IP address
– source port number
– dest IP address
– dest port number

Demux
– receiver uses all four values to

direct segment to appropriate
socket

Server host
– may support many

simultaneous TCP sockets
– each socket identified by

its own 4-tuple

Web servers
– have different sockets for

each connecting client
– non-persistent HTTP will

have different socket for
each request

vumanfredi@wesleyan.edu 15

transport

application

physical
link

network

P3
transport

application

physical
link

P4

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

3 segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

16vumanfredi@wesleyan.edu

transport

application

physical
link

network

P3
transport

application

physical
link

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

vumanfredi@wesleyan.edu 17

Transport Layer

vumanfredi@wesleyan.edu 18

No frills Internet transport protocol
– best effort service, UDP segments may be

• lost
• delivered out-of-order to app

– reliable transfer over UDP
• add reliability at application layer
• application-specific error recovery!

– UDP uses
• streaming multimedia apps (loss tolerant, rate sensitive)
• DNS, SNMP

Connectionless
– no handshaking between UDP sender, receiver
– each UDP segment handled independently of others

vumanfredi@wesleyan.edu 19

– no connection
establishment (which can
add delay)

– simple: no connection
state at sender, receiver

– small header size
– no congestion control:

UDP can blast away as
fast as desired

source port # dest port #

32 bits

application
data

(payload)

UDP datagram format

length checksum

length, in bytes of
UDP datagram,

including header

Why is there a UDP?

vumanfredi@wesleyan.edu 20

Errors
– not just introduced during transmission over links
– can be introduced in memory, at router, at lower layer

UDP does not provide error recovery
– may drop datagram
– may pass datagram data to app with warning

UDP does provide error detection
– it’s useful to know something damaged even if don’t fix
– Q: How?

• Checksum

21vumanfredi@wesleyan.edu

Sender
1. Views datagram contents,

including header fields and
user data, as sequence of
16-bit integers
• skip checksum field

2. Computes checksum
• adds 16-bit integers together

using 1s complement
arithmetic and then takes 1s
complement of result

3. Puts checksum value in UDP
checksum field

Goal: detect “errors” (e.g., flipped bits) in
transmitted datagram

Receiver
1. Computes its own checksum

over datagram including
checksum in UDP header

2. Result should equal all 0s if
no errors
• NO: error detected
• YES: no error detected
• Q: can there still be errors?

vumanfredi@wesleyan.edu 22

Example: add two 16-bit integers
1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most significant
bit needs to be added to the result

Q: Why 1s complement? Why check for 0s?
– for efficiency: computed very fast in hardware
– independent of machine endianness

Summing these
should give 0

vumanfredi@wesleyan.edu 23

24vumanfredi@wesleyan.edu

Reliable Data Transport

vumanfredi@wesleyan.edu 25

Because Internet is unreliable channel
Packets can be corrupted, duplicated, reordered, delayed, lost

Q: What can we do?

26vumanfredi@wesleyan.edu

Sender Receiver

Network
Send
data

Receive
data

Important in application, transport, link layers
• top-10 list of important networking topics!

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt) 27vumanfredi@wesleyan.edu

Important in application, transport, link layers
• top-10 list of important networking topics!

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt) 28vumanfredi@wesleyan.edu

Important in application, transport, link layers
• top-10 list of important networking topics!

Characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt) 29vumanfredi@wesleyan.edu

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data():called by
rdt to deliver data to upper

vumanfredi@wesleyan.edu 30

Our plan
– incrementally develop

• sender, receiver sides of reliable data transfer protocol (rdt)
– consider only unidirectional data transfer

• but control info will flow in both directions!
– use finite state machines (FSM) to specify sender, receiver

state
1

state
2

Event causing state transition
Actions taken on state transition

State: when in this
state, next state is
uniquely determined
by next event

Event
Actions

vumanfredi@wesleyan.edu 31

Reliable Data Transport

vumanfredi@wesleyan.edu 32

Underlying channel perfectly reliable
– no bit errors
– no loss of packets

Separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver reads data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

sender receiver

vumanfredi@wesleyan.edu 33

Reliable Data Transport

vumanfredi@wesleyan.edu 34

Underlying channel may flip bits in packet
– checksum to detect bit errors
– Q: how to recover from errors?

How do humans recover from “errors”
during conversation?

vumanfredi@wesleyan.edu 35

Underlying channel may flip bits in packet
– checksum to detect bit errors
– Q: how to recover from errors?

Acknowledgements (ACKs)
– receiver explicitly tells sender that pkt received OK

Negative acknowledgements (NAKs)
– receiver explicitly tells sender that pkt had errors
– sender retransmits pkt on receipt of NAK

New mechanisms in rdt2.0 (beyond rdt1.0)
– error detection
– feedback

• control msgs (ACK,NAK) from receiver to sender
vumanfredi@wesleyan.edu 36

37vumanfredi@wesleyan.edu

Continue rdt2.0 next lecture

