Lecture 13: Transport Layer

Flow and Congestion Control

COMP 332, Spring 2018
Victoria Manfredi

Acknowledgements: materials adapted from Computer Networking: A Top Down
Approach 7t edition: ©1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved
as well as from slides by Abraham Matta at Boston University, and some material
from Computer Networks by Tannenbaum and Wetherall.

Today

1. Announcements
— exam wed!
— graded homework update

2. TCP flow control
3. Causes and costs of congestion

4. TCP congestion control

5. Midterm overview
— exam format

vumanfredi@wesleyan.edu

TCP
FLOW CONTROL

What if sender overwhelms receiver?

Problem

Application may remove data

Application
prqcesgs

from TCP socket buffers

... slower than TCP receiver is

1AL/

TCP socket
receiver buffers
/\

delivering (sender is sending)

A

TCP
code

IP
code

1] 'Y
I

from sender

Receiver protocol stack

TCP flow control

Receiver provides feedback to sender
— so0 sender doesn’t overflow receiver’s buffer
— sender and receiver each maintain window

Receiver to application process
— rwnd: free space in RcvBuffer 7 !_J.T\
— puts rwnd in TCP header of RcvBuffer buffered data
receiver-to-sender segments T
rwnj— free buffer space
Sender v
— limits unacked data to rwnd I
— ensures RcvBuffer will not TCP segment payloads
overflow

Receiver-side buffering

rwnd

<

Source Port: 443

Destination Port: 52232

[Stream index: 0]

[TCP Segment Len: 0]

Sequence number: 0 (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes

<

000. = Reserved: Not set
«:® +... = Nonce: Not set
vass 0.u. = Congestion Window Reduced (CWR): Not set
vess +0.. = ECN-Echo: Not set
vess 220, = Urgent: Not set
vass sxsl ... = Acknowledgment: Set
sass sass 0... = Push: Not set
0.. = Reset: Not set
>

vens sses 2220 = Fin: Not set

W*]
indow size value: 8190

[Calculated window size: 8190]

~L . Nn.. _LNnn P77 2 a2 = P LR A e |

Receiver use of rwnd

Keeps track of space in its RcvBuffer

Last byte read by
app process

RcvBuffer (B)
A
Received
Read bytes | Received bytes eb(;?;\;e Free space
A
\ J
|
rwnd
Next byte Last byte
needed received

rwnd = B — (last byte received — last byte read)

Sender use of rwnd

Limits # of in-flight segments of sender

SendBuffer (B)
A

ACK’'d
bytes No data
Al J
|
rwnd
1st unACK’d Last byte can
byte send (= last byte

written by app)

Sending rate limited to: rwnd bytes/RTT seconds

Sender use of rwnd

Problem: if rwnd = 0, what happens?

SendBuffer (B)
I

ACK'd
bytes No data
rwnd
1st unACK’d Last byte can
byte send (= last byte

written by app)
No ACKs sent

— but then receiver has no way to let sender know rwnd increased

Solution
— send segments with 1 byte of data, which receiver ACKs

Congestion
CAUSES AND COSTS

What if sender overwhelms network?

Receive buffer is not only resource limitation
— every pkt has to travel through path of routers
— routers may be congested, have long queues ...

Causes of network congestion
— many senders competing for network resources

— senders lacking knowledge
« amount of resources available (bandwidth)
 # of other senders competing

Costs of network congestion

As queues in bottleneck link fill up

— large packet delays Bad
— dropped packets feedback
loop!

As timeouts expire at sender due to delays/drops
— packets retransmitted

Problem
— retransmission treats symptoms but not underlying problem

Q: How to solve underlying problem of congestion?
— reduce sending rate
— what should sending rate be?

» depends on available bandwidth
» sender increases/decreases sending rate based on congestion level

Scenario 1: no retransmission

Original data: /.,

2 Senders, no
retransmission

Host B «g

R/2 _

}\‘out

Host A

. <

Output link
capacity: R

—]

—~

Max p:er-
connection

throughput: R/2

Ain RI/2

delay

Throughput: /A

Infinite buffers:
unlimited shared
output link buffers

2 Receivers

Large delays as
arrival rate, A,
approaches
capacity

Q: Why R/27?

R/2

Scenario 2: retransmission
kin

Retransmitted +
original data: A’

Finite buffers:
limited shared
output link buffers

2 Senders and HostA
retransmission

Output link l

capacity: R Loss

Sender retransmits timed-out packet

2 Recelivers

Lin = Aoyt @pp-layer input equals app-layer output
Nin 2 Ai- transport-layer input includes retransmissions

Performance now depends on how retransmission performed

Midterm
OVERVIEW

Midterm overview

In class on Wednesday Mar. 28
— closed book, closed notes
— covers material in lectures 1 to 12

Will not ask questions on
— probability
— distributed hash tables

5 questions
— app layer short questions
— transport layer short questions
— sequence number ranges
— caching and delays
— reliable data transport protocols

Problems 1 and 2

App layer and transport layer short questions
— 6 in total
— similar to review questions in book
— should only need to write a few sentences to answer

Problem 3

Do some reasoning about sequence #s

— for a given receiver window range of sequence #s, what range of
sequence #s can sender have?

Problems 4

Given a network that can use caching for DNS and HTTP
— give all messages that must be sent when a user enters a URL
— sum up the delays incurred
— (ignoring TCP handshaking)

Problem 5

Design a reliable data transfer protocol
— given channel characteristics design most efficient protocol

— be able to design reliable data transfer protocol like Stop-and-wait,
know your timeline diagrams

