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Today

1. Announcements
— exam wed!
— graded homework update

2. TCP flow control
3. Causes and costs of congestion

4. TCP congestion control

5. Midterm overview
— exam format
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TCP
FLOW CONTROL



What if sender overwhelms receiver?

Problem

Application may remove data
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TCP flow control

Receiver provides feedback to sender
— so0 sender doesn’t overflow receiver’s buffer
— sender and receiver each maintain window

Receiver to application process
— rwnd: free space in RcvBuffer 7 !_J.T\
— puts rwnd in TCP header of RcvBuffer buffered data
receiver-to-sender segments T
rwnj— free buffer space
Sender v
— limits unacked data to rwnd I
— ensures RcvBuffer will not TCP segment payloads
overflow

Receiver-side buffering



rwnd

<

Source Port: 443

Destination Port: 52232

[Stream index: 0]

[TCP Segment Len: 0]

Sequence number: 0 (relative sequence number)
Acknowledgment number: 1 (relative ack number)
Header Length: 32 bytes

<

000. .... .... = Reserved: Not set
«:® .... +... = Nonce: Not set
vass 0.u. .... = Congestion Window Reduced (CWR): Not set
vess +0.. .... = ECN-Echo: Not set
vess 220, .... = Urgent: Not set
vass sxsl ... = Acknowledgment: Set
sass sass 0... = Push: Not set
0.. = Reset: Not set
>

vens sses 2220 = Fin: Not set

W*]
indow size value: 8190

[Calculated window size: 8190]
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Receiver use of rwnd

Keeps track of space in its RcvBuffer

Last byte read by
app process

RcvBuffer (B)
A
Received
Read bytes | Received bytes eb(;?;\;e Free space
A
\ J
|
rwnd
Next byte Last byte
needed received

rwnd = B — (last byte received — last byte read)




Sender use of rwnd

Limits # of in-flight segments of sender

SendBuffer (B)
A

ACK’'d
bytes No data
Al J
|
rwnd
1st unACK’d Last byte can
byte send (= last byte

written by app)

Sending rate limited to: rwnd bytes/RTT seconds



Sender use of rwnd

Problem: if rwnd = 0, what happens?

SendBuffer (B)
I

ACK'd
bytes No data
rwnd
1st unACK’d Last byte can
byte send (= last byte

written by app)
No ACKs sent

— but then receiver has no way to let sender know rwnd increased

Solution
— send segments with 1 byte of data, which receiver ACKs



Congestion
CAUSES AND COSTS



What if sender overwhelms network?

Receive buffer is not only resource limitation
— every pkt has to travel through path of routers
— routers may be congested, have long queues ...

Causes of network congestion
— many senders competing for network resources

— senders lacking knowledge
« amount of resources available (bandwidth)
 # of other senders competing



Costs of network congestion

As queues in bottleneck link fill up

— large packet delays Bad
— dropped packets feedback
loop!

As timeouts expire at sender due to delays/drops
— packets retransmitted

Problem
— retransmission treats symptoms but not underlying problem

Q: How to solve underlying problem of congestion?
— reduce sending rate
— what should sending rate be?

» depends on available bandwidth
» sender increases/decreases sending rate based on congestion level



Scenario 1: no retransmission

Original data: /.,
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Scenario 2: retransmission
kin

Retransmitted +
original data: A’

Finite buffers:
limited shared
output link buffers

2 Senders and  HostA
retransmission

Output link l

capacity: R Loss

Sender retransmits timed-out packet

2 Recelivers

Lin = Aoyt @pp-layer input equals app-layer output
Nin 2 Ai- transport-layer input includes retransmissions

Performance now depends on how retransmission performed



Midterm
OVERVIEW



Midterm overview

In class on Wednesday Mar. 28
— closed book, closed notes
— covers material in lectures 1 to 12

Will not ask questions on
— probability
— distributed hash tables

5 questions
— app layer short questions
— transport layer short questions
— sequence number ranges
— caching and delays
— reliable data transport protocols



Problems 1 and 2

App layer and transport layer short questions
— 6 in total
— similar to review questions in book
— should only need to write a few sentences to answer



Problem 3

Do some reasoning about sequence #s

— for a given receiver window range of sequence #s, what range of
sequence #s can sender have?



Problems 4

Given a network that can use caching for DNS and HTTP
— give all messages that must be sent when a user enters a URL
— sum up the delays incurred
— (ignoring TCP handshaking)



Problem 5

Design a reliable data transfer protocol
— given channel characteristics design most efficient protocol

— be able to design reliable data transfer protocol like Stop-and-wait,
know your timeline diagrams



