Wesleyan University, Fall 2025, COMP 211
Homework 7: More arrays: an editor buffer

Due by 11:59pm on November 11, 2025

1. WRITTEN PROBLEMS (5 POINTS)

PROBLEM 1. In a priority queue, each element has a priority assigned to it. For example, if your
queue comprised integer values, each value stored might represent the priority of the entry. Now, in
a priority queue, rather than always dequeueing the first element of the queue, the highest priority
element is dequeued. If multiple elements have the same priority, than the element closest to the
front of the queue is dequeued. You now also have some flexibility in choosing how elements are
enqueued: rather than just enqueuing elements at the back of the queue, you might choose to keep
your queue sorted based on priority, or you might choose to keep your queue unsorted.

Explain how you would use an array to implement a priority queue. In particular, write out
C code for the enqueue and dequeue functions. Assume that each element is an integer, and its
priority is its value, so you will work with an array of integers. You can choose to use a circular
array if you wish, but it is not necessary. You should assume fixed array capacity, but your enqueue
function should assume there is space remaining in the array to enqueue another element. Your
dequeue function should assume there is at least one element in the queue. Analyze the cost of
your functions in terms of the length of the queue.

Hint: you can implement and test your C code to check that your functions work correctly; if
you choose to do this, please include your C code for the enqueue and dequeue functions only in
your write-up.

2. PROGRAMMING PROBLEMS (15 POINTS)

For this assignment, you will use structures and arrays to implement the buffer of a (very simple)
text editor. Think of the data upon which a text editor operates as a sequence of characters, along
with an “insertion point” that indicates where the next change is to take place. The buffer is
the data structure that represents the text being edited, the location of the insertion point and
any other information that may be needed. The buffer supports operation such as insertion of a
character, deletion of a character next to the insertion point, moving the insertion point left or
right, etc.

The code for managing the buffer is typically independent of the code for managing the display
of the buffer contents (i.e., what the user actually sees). More accurately, an editor typically con-
sists of three components: the buffer, a view of the buffer (some sort of display), and a controller
that accepts user input. At a high level, the controller is really an infinite loop that executes the
following steps, where the buffer is initially empty:

(1) Update the view, which will display the text in the buffer, along with an indication of the
location of the insertion point (often by a vertical bar between two of the characters in the
text).



2 FALL 2025, COMP 211, HOMEWORK 7: MORE ARRAYS: AN EDITOR BUFFER

(2) Wait for an event that indicates that the user wishes to change the buffer. Typical events
are a key press of an ordinary character (indicating that the user wishes to insert a character
into the buffer), a key press of the backspace or delete key (indicating that the user wishes
to delete a character from the buffer), or a key press of an arrow key (indicating that the
user wishes to change the position at which the next event will affect the buffer).

(3) Modify the buffer according to the event.

The driver program provided in the code distribution implements a text-based version of a con-
troller and view by presenting the user with a menu of options (like insert a character, delete the
character to the left of the insertion point, etc.) and displaying the contents of the buffer as a
string. Provided you implement an appropriate set of functions for modifying and querying the
buffer, neither the controller nor the view need to know anything about how the text and insertion
point are actually represented. Your job is to implement the buffer structure and that appropriate
set of functions. In a bit more detail, you will implement the following:

e A buffer structure that has at least one field: an array of char values. You will almost
certainly have other fields (see below).

e An insertion function that inserts a new character into the buffer at the current insertion
point.

e Two deletion functions that delete the character to the left or right of the current insertion
point.

e Two functions to move the insertion point to the left and the right.

e A function to set the insertion point to a specific position.

e A function that takes a buffer and two char arrays as parameters, and fills one of the arrays
with the contents to the left of the insertion mark and the other with the contents to the
right of the insertion point. The view uses this function to display the contents of the buffer
and the insertion point.

The functions are specified in hw7.h, and you will implement them in hw7.c. The header file
hw7.h has an empty definition of a buffer structure; it is up to you to fill in the details. Do not
modify any other part of hw7.h.

3. ADDITIONAL NOTES

(1) As mentioned, your buffer structure must have at least a character array, which you will
use to store the characters in the buffer. However, you must also somehow represent the
location of the insertion mark. One way to do this is to use one NULL character to stand for
the insertion point, and a second NULL character to stand for the end of the text (the char
array is of fixed size, so in general will be bigger than the number of characters in the text).
Another way is to use another field that is the index of the character just to the right or
left of the insertion point. The former might be slightly simpler for this assignment, but
I recommend trying the latter. The reason is that we will revisit this problem in a later
assignment using a linked list instead of an array, and you will need to use a version of the
latter approach then, so you might as well get comfortable with it now.



(2)

(3)

FALL 2025, COMP 211, HOMEWORK 7: MORE ARRAYS: AN EDITOR BUFFER 3

Insertion and deletion of characters will be inefficient, as you will have to “shift” characters
in the array. When we revisit this problem using a linked list, insertion and deletion will
be constant-time operations.

Not every value of type struct buffer will represent a valid editor buffer. For example,
if you use a field for the index of the character next to the insertion point, there will be
some sort of bounds on the value of that field. In other words, you must have some sort
of invariant on your buffer values. You must code up this invariant and assert that
every function that mutates a buffer preserves it. For example, your implementation of
move_left would look something like the following

void move_left(struct bufferx b) {

assert (buf_ok (b)) ;
return;

}

where your buf_ok function has signature

bool buf_ok(struct bufferx b);

and returns true if b satisfies your invariant.

The code distribution comes with a driver program for you to test your code. Figure 1
shows a sample session using the driver. Notice that you must create an empty buffer
before performing any operations on it!

Writing automated tests for this sort of structure is a bit challenging. An appropriate test
suite will test your buffer on many sequences of arbitrary operations. It is worth thinking
about how you might implement such a suite of tests.

4. CODE DISTRIBUTION

This assignment comes with a code distribution, comprising files that you will need to complete
the programming problems for this assignment:

hw7.h: header file for the code you will write. This file declares the functions that you must
implement. The only code you should add to this file is to add fields to the buffer struct.

hw7.c: function stubs matching hw7.h have been implemented for you to get you started.
driver.c: a small driver program. To compile the driver program, use the command
gcc —-std=c99 -o driver driver.c hw7.c

Makefile: a Makefile for this assignment. Instead of using the above command for compil-
ing your code, you can use the command make driver.



4 FALL 2025, COMP 211, HOMEWORK T7:

$ ./driver

(0) Exit

(1) Create empty buffer
(2) Insert character

(3) Delete left

(4) Delete right

(5) Move insert mark left
(6) Move insert mark right
(7) Set insert mark position
(8) Print buffer

Enter choice: 1

Buffer contents:

|

(0) Exit

Enter choice: 2
Enter character: a
Buffer contents:
al

(0) Exit

Enter choice: 2
Enter character: b
Buffer contents:
ab|

(0) Exit

Enter choice: 2
Enter character: c
Buffer contents:
abc|

(0) Exit

(8) Print buffer
Enter choice: 2
Enter character: d
Buffer contents:
abcd |

(0) Exit

Enter choice: 7
Enter position: 3
Buffer contents:
abcld

(0) Exit

Enter choice: 5
Buffer contents:
ablcd

(0) Exit

Enter choice: 3
Buffer contents:
alcd

(0) Exit

Enter choice: 4
Buffer contents:
ald

(0) Exit

Enter choice: 4
Buffer contents:
al

(0) Exit

Enter choice: 4
Buffer contents:
al

(0) Exit

Enter choice: 3
Buffer contents:
|

(0) Exit

Enter choice: 3
Buffer contents:

MORE ARRAYS: AN EDITOR BUFFER

FIGURE 1. A sample session using the editor buffer driver program. The menu has
been elided to save space.

5. SUBMISSION

Submit your written work as hw7.pdf and your code as hw7.c and hw7.h to the Google Drive di-
rectory I have created for you named comp211-f25-USERNAME/hw7/. You should replace USERNAME
with your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.



