Wesleyan University, Fall 2025, COMP 211
Homework 6: Arrays and Sorting

Due by 11:59pm on October 28, 2025

1. WRITTEN PROBLEMS (5 POINTS)

PROBLEM 1. For each of the the three coding problems, explain (1) the cost of your implementation
and (2) the amount of extra memory used (in addition to the array given to the function). Simply
giving the big-Oh notation for the algorithms you implemented is not sufficient although necessary
to do: you must also explain how you arrived at whatever cost you did.

Solution:
Palindrome:
O(n) time: we loop for as long as left < right. Since left is initially 0 and right is the
string length n — 1, and each iteration we increment left by 1 and decrement right by
1, then we will loop n/2 € O(n) times.
O(1) space: since only two integer variables are used, the extra memory used is O(1).

Insertion sort:
O(n?) time: the outer loop loops n times, while the inner loop may have to shift up to n
elements. Hence, the total number of times the operations in the inner loop may need
to be executed is O(n?).
O(1) space: since only a constant number of extra integer variables is used, the extra
memory used is O(1).

3-way mergesort:

O(nlogn) time: Roughly, the first recursion will divide the array into 3 subarrays each
of size n/3. The second recursion will divide the array into 9 subarrays each of size
1n/9, and so on. The number of times merge_sort3 will recurse is logz n. Now for each
recursion, n amount work will need to be done, to merge back together the subarrays.
Since the logarithm base is just a constant, we don’t need to write the base in the
big-Oh notation.

O(n) space: since in order to do the merge an array of up to length n must be used to
temporarily hold the merged subarrays.

2. CODING PROBLEMS (15 POINTS)
PrROBLEM 2. Write a function is_palindrome that satisfies the following specification:

e Function header. bool is_palindrome(char[])

e Pre-condition. s is null-terminated.



2 FALL 2025, COMP 211, HOMEWORK 6: ARRAYS AND SORTING

e Function body. This should satisfy the following:

true ifs[i] =s[n—1—1i] foralli < (n —1— 1), where n = strlen(s)

is_palindrome(s) = {false otherwise

In other words, the function you will implement is an algorithm to check whether the string s is
a palindrome. A palindrome is a string that is the same whether written forwards or backwards.
For instance, racecar is a palindrome. Don’t forget about edge cases: the empty string, and all
length-1 strings, are palindromes.

You will get substantial credit for a reasonable and correct implementation. But for full credit,
your implementation must have O(n) cost, and any extra space required should be independent of
the size of the string argument.

PROBLEM 3. For this problem you will implement the insertion sort algorithm. Conceptually, in-
sertion sort starts with an empty sorted list of length 0, and then successively inserts values into
their correct place, growing the sorted list length by 1 with each insertion. In more detail:

Algorithms in C, by Sedgewick: Insertion sort “consider[s| the elements one at a time,
inserting each in its proper place among those already considered (keeping them sorted).
In a computer implementation we need to make space for the element being inserted by
moving larger elements one position to the right, and then inserting the element into the
vacated position. As in selection sort, the elements to the left of the current index are in
sorted order during the sort, but they are not in their final position, as they may have to
be moved to make room for smaller elements encountered later.”

Write a function insertion_sort with the following signature.
void insertion_sort(int A[], int n)

See Section 6.3 in Algorithms in C for more details on insertion sort and ideas about simplifying
your code. However, you should develop your implementation without referring back to the insertion
sort code given in the book.

PROBLEM 4. In class, we saw a recursive implementation of the mergesort algorithm that divides
the input array into halves, recursively sorts each half, and then merges the results. In this problem
you will write a three-way recursive mergesort algorithm that divides the input array into thirds,
recursively sorts each third, and then merges the results. Specifically, write a function merge_sort3
with the following signature:

void merge_sort3(int A[], int lo, int hi)

The stubs for this function as well as the merge function are given to you in hw6é.c.



FALL 2025, COMP 211, HOMEWORK 6: ARRAYS AND SORTING 3

3. CODE DISTRIBUTION

This assignment comes with a code distribution, comprising files that you will need to complete
the programming problems for this assignment:

e hw6.h: header file for the code you will write. This file declares the functions that you must
implement. Do not change the contents of this file; if it appears to be causing problems
with compilation, the problem is with your solution.

e hw6.c: Function stubs matching hw6.h have been implemented for you to get you started.
e comp211.h: a header file that defines dotest, which is used in tests.c.

e tests.c: a small testing program. This program provides just a few tests. You should
certainly add more. To compile the testing program, use the command

gcc —--std=c99 -o tests tests.c hw6.c

e driver.c: a small driver program. This program provides a simple interactive program
that uses your unimodal_search_r function. You may modify it however you like. To
compile the driver program, use the command

gcc -—std=c99 -o driver driver.c hw6.c

e Makefile: a Makefile for this assignment. Instead of using the above commands for com-
piling your code, you can use the commands make tests and make driver.

4. SUBMISSION

Submit your written work as hw6.pdf and your code as hw6.c to the Google Drive directory
I have created for you named comp211-f25-USERNAME/hw6/. You should replace USERNAME with
your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.

You do not submit hw6.h or any test or driver programs. When we test your code, we will add
in our copy of hw6.h and our own testing program. In particular, if you change hw6.h in order to
make your code compile, then your code will probably fail to compile with our hw6.h, and hence
you will receive little to no credit for the coding portion of this assignment.



