Wesleyan University, Fall 2025, COMP 211
Homework 4: Arrays and searching

Due by 11:59pm on October 7, 2025

1. WRITTEN PROBLEMS (5 POINTS)

PrOBLEM 1. Consider the pseudocode in Program 1 and assume execution starts at the first line of
main (i.e., assume you have a stack with a single empty binding table just before executing line 12).
Recall that malloc is used to dynamically allocate memory.

Explain what the values of A and B are at line 16, both in terms of addresses and in terms
of what is located in memory at those addresses. Describe any issues that might arise from the
execution of function f£. Justify your answer by describing how the environment changes as the
program executes (and in particular when f is called). Assume a character requires two bytes of
storage.

Solution: At line 16, A is the array [’a’, ’*b’, ’c’, ’q’| and B is the array [’d’, ’e’, *f’]. A
major issue will arise after function f is executed is that after the function returns, there will be
no way to reach the memory allocated in the function, creating a memory leak. Let’s analyze how
the environment changes to see that this is the case.
(1) Executing the declarations just creates uninitialized entries in the current binding table for
A and B, so after the declarations the environment is

S={A-=7 B -7}

(2) After executing the assignments in main, there are changes to both the current binding table
and to memory. Evaluation of an array expression reserves a block of memory that is large
enough to hold the array elements; the value of the array expression is the first memory
location of the block. Suppose the evaluation of [’a’, ’b’, ’c’, ’m’] allocates memory
starting at location 400. Then the (representations of the) characters ’a’, *b’, ’c’, and
'm’ are stored in memory starting at memory location 400. Thus memory location 400
stores the (representation of) ’a’, memory location 402 stores ’b’, memory location 404
stores ’c’, and memory location 406 stores m’. And the value assigned to A in the current
binding table is the memory address 400. Similarly, if the evaluation of [’d’, ’e’, *f’]
allocates memory starting at location 500, then memory locations 500, 502, and 504 store
’d’, ’e’, and ’£f’, respectively, and the value assigned to B in the current binding table is
memory address 500. Thus the environment is

S = {A — 400, B — 500}.

(3) When we call £, we add a new binding table, S’, to the stack, with initial bindings that
bind the values of the arguments in the call to the corresponding parameters. Thus the
environment is

S ={A — 400, B — 500}; S’ = {A — 400, B — 500}

(4) To execute line 3, the representation of ’q’ is stored at the memory address S'(A) + 3 - 2,
where S’ is the current binding table, 3 is the index being assigned to, and 2 is the size of

1



FALL 2025, COMP 211, HOMEWORK 4: ARRAYS AND SEARCHING

void f(charx A, charx B) {

}

] = ’X’;
] =y

] = ’Z’;

char A[] = {’a’, ’b’, ’c’, ’m’};
char B[] = {’d’, ’e’, £’ };

f(A, B);

// What are values of A and B here?

return O;

PROGRAM 1. A program with a function that manipulates arrays.

the representation of a char value. Since S'(A) = 400, this memory address is 406, and
so the memory at location 406 is set to the representation of ’q’. So now the memory
starting at location 400 stores the characters ’a’, ’b’, ’c’, ’q’ and the memory starting
at location 500 stores the characters ’d’, ’e’, >f’. There is no change to the stack of
binding tables.

To execute line 4 a new block of memory is allocated say starting at location 900, so now
S’(B) = 900 rather than 500. Lines 4-6 then fill it with the representations of 'x’, ’y’, and
'z’. So the memory locations 900, 902, and 904 store the characters ’x’, ’y’, and ’z’,
respectively. Note however, that the data starting at memory locations 400 and 500 has
not changed. Thus the environment is

S ={A — 400, B — 500}; S’ = {A — 400, B — 900}
When we return, we pop the top binding table from the stack, so the environment is
S ={A — 400, B — 500};
The contents of the memory starting at locations 400, 500, and 600 have not changed.

So now we can see what array A represents. Since the value of A in the current binding table

is 400,

the array consists of the four characters that start at memory location 400, which are

[’a’, ’b’, ’c’, ’q’]. Since the value of B is the current binding table is 500, the array consists
of the three characters that start at memory location 500, which are [*d’, ’e’, >£’]. The value,
however of B in the binding table S’, however, has been lost, and there is now no way to reach the
memory that was allocated.



FALL 2025, COMP 211, HOMEWORK 4: ARRAYS AND SEARCHING 3

2. CODING PROBLEMS (15 POINTS)

When you are given pre-conditions to functions, you may assume that these conditions hold
when your function is called. You do not have to verify that they are true of the arguments, and
your functions will only be tested on arguments that meet the pre-conditions.

PROBLEM 2. Write a function merge that satisfies the following specification:

e Function header. void merge(int A[], int m, int B[], int n, int C[])

e Pre-condition. A[0] <--- < A[m — 1] and A has size m; B[0] < --- < B[n —1] and B has
size n; and C has size m + n. In other words, the pre-conditions state that A and B are
sorted in non-decreasing order.

e Function body. This should satisfy the following: when merge(A, m, B,n,C) returns, C
comprises all elements of A and B, and furthermore C[0] < --- < C[m +n — 1], i.e., C is
also sorted in non-decreasing order.

Your function must have cost O(m-+n). The basic idea here is to “zipper” together the elements
of A and B. You will need two variables, one of which marches through the indices of A and
the other of which marches through the indices of B. The indices tell you which elements of A
and B could be the next one to be added to C'; which one is actually added will depend on how
they compare to each other. You will need to do the marching simultaneously with an appropriate
loop. You should write out some examples on paper (pictures, not code) to get a feel for how your
algorithm should behave before trying to write this code.

PRrROBLEM 3. Write a function bin_search that satisfies the following specification:

e Function header. int bin_search(int A[], int n, int x)
e Pre-condition. A has size n, and for 0 < i <n—1, Afi] < Ali + 1]

e Function body. This should satisfy the following:

i, where Ali] = x and for all j < i, A[j] #x

bi h(A,n,z) =
in_search(4,n,z) {—1, there is no i such that 0 < i < n and Ali] = .

In other words, the function you will implement is similar to the binary search algorithm described
in class and the readings, except that it must return the smallest index i such that A[i] = x. For
full credit, your implementation must have O(lgn) cost.

PROBLEM 4. Write a function unimodal_search that satisfies the following specification:

e Function header. int unimodal_search(int A[], int x)



4 FALL 2025, COMP 211, HOMEWORK 4: ARRAYS AND SEARCHING

e Pre-condition. A has size n, and there is some i such that

A0 < A[l] <+ < Ali— 1] < Ali]] > A[i+ 1] > --- > An —1].

e Function body. This should satisfy the following:
unimodal_search(A,n) =i, where A[i] = max (A[0],..., A[n —1]).

In other words, A consists of values that are strictly increasing up to some index i, and then
strictly decreasing after that. unimodal_search(A,n) will return i. Note that it could be that i = 0
or i =n — 1. There are at least a couple of ways of doing this. One is a fairly direct adaptation of
binary search and has cost O(logyn). A cleverer implementation has cost O(logsn).

3. CODE DISTRIBUTION

This assignment comes with your first code distribution, comprising files that you will need to
complete this assignment:

e hw4.h: header file for the code you will write. This file declares the functions that you must
implement. Do not change the contents of this file; if it appears to be causing problems
with compilation, the problem is with your solution.

e hwd.c: The only code file you will submit for this homework. Function stubs matching
hw4.h have been implemented for you to get you started.

e comp211.h: a header file that defines dotest, which is used in tests.c.

e tests.c: a small testing program. This program provides just a few tests. You should
certainly add more. To compile the testing program, use the command

gcc ——std=c99 -o tests tests.c hwéd.c

e driver.c: a small driver program. This program provides a simple interactive program
that uses your unimodal_search function. You may modify it however you like. To compile
the driver program, use the command

gcc ——std=c99 -o driver driver.c hwéd.c

e Makefile: a Makefile for this assignment. make is a program for simplifying compilation of
complex programs. From our perspective, its primary role is to shorten the command for
compiling a program. Instead of using the above commands for compiling your code, you can
use the commands make tests and make driver. Makefile is a file with instructions for
make that say, in effect, to execute the compilation commands above when the corresponding
make commands are given. We may not have covered the use of make by the time of this
assignment, and you do not need to use it if you don’t want to.



FALL 2025, COMP 211, HOMEWORK 4: ARRAYS AND SEARCHING 5

4. SUBMISSION

Submit your written work as hw4.pdf and your code as hw4.c to the Google Drive directory
I have created for you named comp211-£f25 -USERNAME/hw4/. You should replace USERNAME with
your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.

You should not submit hw4.h or any test or driver programs. When we test your code, we will
add in our copy of hw4.h and our own testing program. In particular, if you change hw4.h in order
to make your code compile, then your code will probably fail to compile with our hw4.h, and hence
you will receive little to no credit for the coding portion of this assignment.



