
Wesleyan University, Fall 2025, COMP 211

Homework 2: More information Representation

Due by 11:59pm on September 23, 2025

1. Written problems (10 points)

Problem 1. In the following, “number” means non-negative integer; representation, numeral, etc.,
always means 8-bit unsigned binary representation; and the division operator / means integer di-
vision (i.e., always round down, so 8/2 = 4 and 7/2 = 3).

Suppose the numeral for the number n is b7b6b5b4b3b2b1b0.

(a) What is the numeral for n/2? Write this out in terms of the bi.
(b) What is the numeral for 2n? Write this out in terms of the bi. Assume that if the numeral

requires more than 8 bits, then the most-significant bits are dropped to obtain an 8-bit
numeral. In other words, if n ≥ 128, then your answer will be a numeral that does not
actually represent 2n.

(c) What number is represented by b7 . . . b10 (i.e., the same representation as n, except the
least significant bit is 0)? Express your answer as some arithmetic function of n.

(d) What number is represented by b7 . . . b11? Express your answer as some arithmetic function
of n.

For each of these problems, make use of the fact that the numeral for n is a listing of the
coefficients when you express n as a sum of powers of 2. For example, we are given that n =
b7 · 27 + · · · + b1 · 21 + b0 · 20. Use this to write n/2 as a sum of powers of 2, which tells you the
numeral that represents n/2.

Solution:

(a) Expressed as a sum of powers of 2, n/2 = 0 · 27 + b7 · 26 + · · ·+ b1 · 20, so the numeral for
n/2 is 0b7 . . . b1.

(b) Expressed as a sum of powers of 2, 2n = b7 ·28 +b6 ·27 + · · ·+b1 ·22 +b0 ·21 +0 ·20. Without
overflow, the numeral would be b7 . . . b00, which is 9 bits. We drop the most significant bit
to get b6 . . . b00

(c) The number represented by b7 . . . b10 is b7 · 27 + · · ·+ b1 · 21 + 0 · 20 = 2(n/2).
(d) The number represented by b7 . . . b11 is b7 · 27 + · · ·+ b1 · 21 + 1 · 20 = 2(n/2) + 1.

Problem 2. Consider the pseudocode program in Figure 1. Describe the evolution of the state
for the entire execution of this program, starting from the empty state. To do this, you will have
to describe how each line changes the state (if it does). So your description will probably be a
sequence of sentences something like “After line X, the state is Y because Z.” Use the “list of
bindings” notation rather than table notation. Your description must explain each time the state
changes.

Solution: Here is the sequence of states:

1



2 FALL 2025, COMP 211, HOMEWORK 2: MORE INFORMATION REPRESENTATION

1 int i

2 int x

3

4 i ← 4

5 x ← 3

6 while i < 7 do

7 x ← x + i

8 i ← i + 2

9 endw

Figure 1. A pseudocode program.

(1) We start with the empty state s0 = {}.
(2) A variable declaration adds an entry with no value, so after Lines 1 and 2, the state is

s1 = {i 7→?, x 7→?}.
(3) The expressions on lines 4 and 5 do not depend on any variables, so they just set the

corresponding bindings in the state: s2 = {i 7→ 4, x 7→ 3}.
(4) We evaluate i < 7 with the state s2; since s2(i) = 4 < 7, the test evaluates to true, so we

enter the loop body.
(a) For line 7, x + i = s2(x) + s2(i) = 3 + 4 = 7, so we update the state to bind 7 to x:

s3 = {i 7→ 4, x 7→ 7}.
(b) For line 8, i + 2 = s3(i) + 2 = 4 + 2 = 6, so we update the state to bind 6 to i:

s4 = {i 7→ 6, x 7→ 7}.
(5) We evaluate i < 7 with the state s4; since s4(i) = 6 < 7, the test evaluates to true, so we

enter the loop body. Using the same reasoning as before, at the end of the loop body the
state is s5 = {i 7→ 8, x 7→ 13}.

(6) We evaluate i < 7 with the state s5; since s5(i) = 8 6< 7, the test evaluates to false, and so
we do not enter the loop and end the program. Thus s5 is the final state.

Problem 3. The goal of cryptography is to transform a message in such a way that even if an
adversary sees the message, the adversary is unable to read or understand the message. The Caesar
Cipher, attributed to Julius Caesar, some 2000 years ago, works by taking each letter of plaintext
and substituting the letter that is k locations later in the alphabet. For example, if k = 3, as in
the original Caesar Cipher, we would have the following mapping between plaintext letters and
ciphertext letters.

abcdefghijklmnopqlrstuvwxyz : plaintext letter

defghijklmnopqlrstuvwxyzabc : ciphertext letter

Using this mapping to encrypt the plaintext of “hello world” would give the ciphertext of “khoor
zruog”. Now since there are only 26 letters in the alphabet, the key value, k can take on at most
25 possible values: hence, this cipher is not very secure, since the time it would take to try all 25
key values is negligible.

Suppose a Caesar Cipher has been used to encrypt two lower case alphabet letters, producing
two new lower case alphabet letters. The resulting letters are then encoded using ISO-8859-1 to
produce the final ciphertext. The key used to do the encryption is k = 20: that is, each of the



FALL 2025, COMP 211, HOMEWORK 2: MORE INFORMATION REPRESENTATION 3

$ gcc -o hw2a hw2a.c

$ ./hw2a

Enter non-negative decimal integer to convert: 10

Conversion to binary: 0000000000001010

$ ./hw2a

Enter non-negative decimal integer to convert: 32

Conversion to binary: 0000000000100000

$ ./hw2a

Enter non-negative decimal integer to convert: 23564356433

Conversion to binary: 1111111111111111

Error occurred

Figure 2. Some sample traces from hw2a.

original letters has been mapped to the letter 20 places later in the 26-letter alphabet. If ae were
the original plaintext, then the ISO-8859-1 encodings of the letters uy would be the ciphertext
output by the encryption process.

Now, suppose the two bytes, 01101000 01101001, are the output of the encryption process. What
is the original plaintext?

Solution: The two bytes represent hi when encrypted. To decrypt, we reverse shift each letter 20
places in the alphabet, obtaining the plaintext no. Alternatively, we can simply look up using the
key mapping to see what hi maps to when encrypted.

2. Coding problems (10 points)

Problem 4. You will write a program to convert from decimal to binary. Your program will read
in a non-negative integer entered by a user, and will print out the corresponding unsigned binary
representation. To achieve this, there are multiple different solutions you may choose to implement.
You may assume that the user will enter a non-negative integer (i.e., it does not matter what your
program does if the user enters anything else). Your program should report an error (and also
possibly an incorrect result) if the user enters a non-negative integer that requires more than 16
bits to represent.

For this program, you may not use any library functions such as pow. Additionally note that
pow operates on numbers of floating point type whereas the user is entering a number of integer
type. You should always use the most appropriate type for the information being represented.

You should name your program hw2a.c. Figure 2 is an example trace of the output that should
be seen when your program is executed. As a reminder, the command-line for compiling your
program is also shown, which compiles the source code hw2a.c to the executable program hw2a.
Remember, to execute a program that is in the current working directory, you must use the com-
mand ./<program-name>, where <program-name> is the name of the program (hw2a in this case).
Because . is shorthand for “current working directory,” this command says to find <program-name>

in the current working directory; by default, the shell will not look in the current working directory
for executable programs, so you have to tell it explicitly to do so!



4 FALL 2025, COMP 211, HOMEWORK 2: MORE INFORMATION REPRESENTATION

$ ./hw2b

Enter lower-case letter to encrypt: d

Enter the shift amount for Caesar cipher: 5

Ciphertext is i

$ ./hw2b

Enter lower-case letter to encrypt: C

Error: user did not enter lower-case letter, exiting

$ ./hw2b

Enter lower-case letter to encrypt: q

Enter the shift amount for Caesar cipher: 32

Ciphertext is w

Figure 3. Some sample traces from hw2b.

Problem 5. You will write a program to perform a Caesar shift on a single character. Have your
program first read in the character to be shifted, and then read in the amount to shift by. Your
program should then compute and output the shifted character. You should assume that the user
enters a lower-case letter as the character: if this is not the case, your program should exit. You
should also have a way to handle the case that the shift goes past the last letter in the alphabet.
Hint: a character is represented as 8-bit ASCII in C. You should name your program hw2b.c.
Figure 3 shows a few sample runs of the program.

3. Going further

This question is not to be submitted, but is just a bit of food for thought. In Problem 4, you
assumed that the largest non-negative integer that the user could enter could fit into 16 bits. This
assumption simplified the calculations that your program had to perform. Modify your program
so that this assumption is no longer needed.

Now something you may not have realized is that the number of bits used in a type such as an
int can differ on different hardware implementations. Typically there is some guaranteed minimum
number of bits that will be used to represent a a type; for instance in C, an int is guaranteed to
be at least 16 bits, but could be larger (use more bits) depending on the hardware. This variability
can be problematic: ideally we’d like our programs to be portable, able to be run on any hardware
without needing to do something special. Additionally, for network and systems applications, such
as when we are crafting a header for a network packet, or for performing cryptographic calculations
on data, we need to be able to assume that a type uses exactly the same fixed number of bits,
regardless of where it is run. To address this issue, C has a stdint.h library (include the same way
that stdio.h is included). This library provides types that are guaranteed to only use the specified
number of bits regardless of where they are run. For instance the uint8_t type provided by the
library is guaranteed to be an unsigned integer using exactly 8 bits. Similarly an int16_t type is
guaranteed to be a signed integer using exactly 16 bits. The base set of types provided are int8_t,
int16_t, int32_t, uint8_t, uint16_t, and uint32_t. Going back to Problems 3 and 4 of this
homework, think about how you might have chosen the types for your variables more precisely: for
instance, how many bits does each variable really need to use?



FALL 2025, COMP 211, HOMEWORK 2: MORE INFORMATION REPRESENTATION 5

4. Submission

Upload your written work as hw2.pdf, and your code solutions as hw2a.c, and hw2b.c, to the
Google Drive directory I have created for you named comp211-f25-USERNAME/hw2/. You should
replace USERNAME with your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.


