
Wesleyan University, Fall 2023, COMP 211

Lab 11: Hash tables

1. Overview

The goal of this lab is to is to gain some practice working with hash tables, using them to
implement a set abstract data type and see how you would extend what you’ve done to a dictionary
abstract data type.

2. Create and organize your program files

For this lab, you should create a new directory lab11 in your labs directory to hold your code.
Then do the following.

(1) Download the following files from the lab website. During this lab you will modify both
set.c and set.h.

Makefile

driver.c

set.c

set.h

hash.c

hash.h

3. Set Abstract Data Type

You will implement a set abstract data type using a hash table that uses separate chaining.
Recall that a hash table using separate chaining is implemented using an array of linked lists. An
array of size M will keep track of M linked lists: the ith element in the array will correspond to the
dummy head node for the ith linked list. In set.h, M is named NUM BUCKET and has already been
initialized for you to equal 101.

There are a number of operations that are natural to perform on a set such as adding elements
and deleting elements. The signatures and specifications of the functions you must implement are
given in set.h, which also specifies that there is a structure type set. This structure is defined for
you in set.c; and that is also where you will implement all the functions specified in the header file
(we have written stubs for those functions for you that you should replace). The hash function that
you must use is already implemented for you in hash.c as is a function that checks the invariant
we described in class. Every function that creates or modifies a set argument must verify that the
modified set is valid before returning.

Although NUM_BUCKET has been initialized in set.h to 101, you may wish to set it to a much
smaller value when testing your code in order to make it easy to create collisions.

Important: make sure to add a dummy head node to each linked lists as the check set function
assumes this. Also make sure to use an integer not a character as the key or val to add.

1



2 FALL 2022, COMP 211, LAB 11: HASH TABLES

4. Dictionary Abstract Data Type

You may have come across previously a dictionary (also known as a map) abstract data type.
This can also be implemented using a hash table that uses separate chaining. The dictionary or
map abstract data type is similar to a set, but now associates a value with each key. Thus, a
dictionary is a set of key-value pairs, rather than just keys. Like a set, a dictionary is an unordered
collection in which no key occurs more than once, although the same value may be associated with
different keys. Another perspective on a dictionary is that it is a function from keys to values.

There are a number of operations that are natural to perform on a dictionary, such as adding a
key-value pair and looking up the value corresponding to a key. Think about how your set code
would change in order to instead implement a dictionary.

5. Going further

The hash function that you will use is based on a random number generator. This hash function
relies on the fact that for the same random seed, the random number generator produces the same
sequence of random numbers. The hash function then works as follows, for a given key. First, the
random number generator is seeded with a key. Then the random number generator is called to
generate one random number r. The index (or bucket) into the hash table is then computed using
r mod M. Thus hash(key) = r mod M.

The hash table implementation that you write in this assignment are missing an important
feature of “industrial-strength” implementations. In order to ensure constant average-case insertion,
deletion, and membership testing, we have to fix some number K, and then ensure that the average
chain length is always ≤ K. This is impossible if there are more than K · NUM_BUCKET elements in
the set. The solution is the following: when the size of the set reaches this size, allocate a new,
larger array of chains, and redistribute the keys into the new array.


