Wesleyan University, Fall 2023, COMP 211
Homework 9: Linked lists again: an editor buffer

Due by 11:59pm on November 21, 2023

1. WRITTEN PROBLEMS

There are no written problems for this assignment.

2. PROGRAMMING PROBLEMS (20 POINTS)

For this assignment, you will use doubly-linked lists to implement the buffer of a (very simple)
text editor. The buffer is the data structure that represents the text being edited, along with in-
formation about the current insertion point. It efficiently supports operations to insert and delete
characters at the insertion point and to move the insertion point. The code for managing the buffer
is typically independent of the code for managing the display of the buffer contents (i.e., what the
user actually sees). More accurately, an editor typically consists of three components: the buffer,
a view of the buffer (some sort of display), and a controller that accepts user input. At a high
level, the controller is really an infinite loop that executes the following steps, where the buffer is
initially empty:

(1) Update the view, which will display the text in the buffer, along with an indication of where
in the text the next event (see the next step) will have an effect.

(2) Wait for an event that indicates that the user wishes to change the buffer. Typical events
are a key press of an ordinary character (indicating that the user wishes to insert a character
into the buffer), a key press of the backspace or delete key (indicating that the user wishes
to delete a character from the buffer), or a key press of an arrow key (indicating that the
user wishes to change the position at which the next event will affect the buffer).

(3) Modify the buffer according to the event.

The driver program provided in the code distribution implements a text-based version of a
controller and view by presenting the user with a menu of options (like insert a character, delete
the character to the left of the insertion mark, etc.) and displaying the contents of the buffer as
a string. Provided the buffer structure implements an appropriate interface, neither the controller
nor the view need to know anything about how it represents the text and insertion point. So your
job is to implement the buffer structure so that it implements a specific interface.

In a bit more detail, you will write a module in which you define the following:

e A node structure for doubly-linked lists of characters.

e A buffer structure that has a doubly-linked list of characters (using your node structure)
and a reference to one of those nodes to represent the current insertion point.



2 FALL 2022, COMP 211, HOMEWORK 9: LINKED LISTS AGAIN: AN EDITOR BUFFER

An insertion function that inserts a new character into the buffer at the current insertion
point.

A deletion function that deletes the character to the left of the current insertion point.

A deletion function that deletes the character to the right of the current insertion point.

Two functions to move the insertion point to the left and the right.

A function to set the insertion point to a specific position.

A function that returns the contents of the buffer as a structure with two fields: a string
representing the contents to the left of the insertion point and a string representing the
contents to the right of the insertion point. The view uses this function to display the
contents buffer and the insertion mark.

You will implement the functions in hw9.h in the file hw9.c. The header file hw9.h specifies that
there are structures for nodes and a buffer, but it is up to you to fill in the details. You may not
modify the buffer_contents structure definition; that is part of the interface between the buffer
and the view.

3. ADDITIONAL NOTES

(1) Writing automated tests for this sort of structure is a bit challenging. An appropriate test
suite will test your buffer on many sequences of arbitrary operations. It is worth thinking
about how you might implement such a suite of tests.

(2) You must define what it means for a value of type struct buffer to be a valid bufffer.
For example, part of that definition will be that the linked list is in fact linear in both
directions and that every node satisfies the back-and-forth property. Every function that
takes a struct buffer argument must verify that the argument is a valid buffer, and every
function that modifies a struct buffer argument must verify that the argument is valid
before returning.

4. CODE DISTRIBUTION AND SUBMISSION

As usual, the code distribution contains a driver program (make driver) and a tests program
(make tests). Submit your written work as hw9.pdf and your code as hw9.c and hw9.h to the
Google Drive directory I have created for you named comp211-£f23-USERNAME/hw9/. You should
replace USERNAME with your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.



