
Wesleyan University, Fall 2021, COMP 211

Lab 1: Introduction and first C program

1. Overview

The goals of today’s lab are the following:

(1) To make sure you have setup your programming environment if you haven’t done this
already.

(2) To understand at a high level the organization of the file system on your computer.
(3) To learn the basics of using a terminal-based text editor.
(4) To create, compile, and run your first C program, helloworld.c.

Today, we’ll mostly work through the lab together with me showing my steps on the projector.
Very soon, we’ll switch to me just overviewing the lab and letting you work by yourself or with
others, with me and the CAs available and very willing and happy to help you. Working this way
will help you get accustomed to working out by yourself how to attack a programming problem
and implementing a solution.

2. Choosing your environment

Based on the email I sent out earlier, you should already have an environment set up in which
to work. For those students without a laptop, there are Mac OS machines in the labs that you can
use. Since the computers are wiped daily, you should make sure to copy any files saved there back
to your Wesleyan Google Drive or Microsoft One Drive, email them to yourself, or save them to a
USB stick.

3. File system organization

During this class we will be focused on working from a terminal. You can think of the terminal
as a window into your file system with the ability to launch programs.

You are actually already familiar with working with the file system from a different perspective,
using what you know as folders. Folders really just correspond to directories on the file system.
The file system on your computer is arranged in a structure like an inverted tree, with the root at
the top and the leaves as files. The file system can thus be thought of as set of nested directories
(or folders), starting at the root directory.

The root of the file system is written as a slash, “/”. Note that you should ignore the quotations
here. Your current working directory is written as “./.” To give an absolute path you start from
the root of the file system beginning your path with “/”. To give a relative path you start from
your current working directory, beginning your path with “./” and specifying how to get to the
location of interest starting from where you are now. For instance to refer to two directories higher
than where you are located you could use the relative path “./../..”, using the “..” notation.

Knowing where you are within the filesystem and what is in your current working directory is
important since when we run commands from the command line we normally give the name of
input files (e.g., C files), and it is important that the C compiler knows where to find those files.

The following commands are useful for locating where you are in the file system, determining
what files are currently in a directory, and creating and moving files.

1



2 FALL 2021, COMP 211, LAB 1: INTRODUCTION AND FIRST C PROGRAM

ls: List the contents of your current directory.

ls -a: List the contents of your current directory, giving additional useful file information.

pwd: Print working directory. This is the complete path of where you currently are in the file
system starting from the root.

cd PATH: Change directories to the directory specified by PATH.

cp PATH TO FILE1 PATH TO FILE2: Copy the the file located at location PATH TO FILE1 to
become the file named at location PATH TO FILE2. This results in two copies of the file, at
both locations.

mv PATH TO FILE1 PATH TO FILE2: Move the file located at location PATH TO FILE to become
the file named at location PATH TO FILE. This results in only one copy of the file at the
second location.

rm PATH TO FILE: Remove the file specified at location PATH TO FILE.

mkdir PATH TO DIRECTORY NAME: Create a new directory located at PATH TO DIRECTORY NAME

with the name given.

man COMMAND NAME: The man pages are a useful resource, giving information about various
unix commands and are available at the command line.

Now let’s create and organize a directory for this class. It will be very important to maintain
separate directories for separate code projects, to avoid overwriting code and other confusions, so
let’s get into the habit of doing this now.

Step 1: Create a directory to hold the files for this class with the command mkdir comp211.
Change your location within the file system to this directory with the command cd comp211.

Step 2: Create a directory to hold your lab files with the command mkdir labs. Change to
this directory with the command cd labs.

Step 3: Create a directory to hold your files for today’s lab with the command mkdir lab1.
Change to this directory with the command cd lab1. We call lab1 a subdirectory of the
directory labs.

4. Working with a text editor

In lab today, we will focus on one particular command-line text editor, vim. You may be familiar
with other command-line editors, such as emacs, or other editors such as Atom or Eclipse. You
should not use an editor such as Microsoft word: this will include characters and formatting that
will completely break your code. You should use an editor designed for programming, otherwise
you will have white space issues and other issues.



FALL 2021, COMP 211, LAB 1: INTRODUCTION AND FIRST C PROGRAM 3

Name.

Class year.

Briefly describe your prior programming experience. What programming languages

have you used?

Something interesting you would like to tell me. This can be about

you, about something you find interesting, whatever!

Figure 1. Information to enter in your file about.txt.

Generally, I recommend getting familiar with at least one command-line editor. vi (of which vim

just gives more commands) is a good choice since any terminal on any Linux or Mac OS machine,
whether locally or remotely accessed comes with vi installed, but may not contain any other editor
installed by default.

Now vim itself is just a program (written in C), and as such has its own location in the file system
located in the directory /usr/bin/. I could run vim by specifying the full path with /usr/bin/vim,
but for convenience, the programs in the directory /usr/bin do not need the full path specified,
since this directory is the main directory holding executable commands on your system.

vim can be a bit confusing when you first learn it, since when you use it to open a file, you can’t
immediately start editing. Instead, you must first enter a command to indicate that you would like
to start editing the file; similarly, you must enter a command to indicate that you are done editing.

To open a file, e.g., test.txt using vim, in a terminal type the following at the prompt:

vim test.txt

In vim , the following keys in command mode are useful. Any of these keys when pressed, will
cause you to leave command mode. To re-enter command mode, press the escape key.

i: puts you in insert mode, letting you insert text just before the cursor position. i inserts
at the start of a line.

a: puts you in insert mode, letting you insert text just after the cursor position. a inserts at
the end of line.

o: creates a new line below the line where the cursor is and enters insert mode.

x: deletes the character under the cursor.

w: writes the file to disk. I.e., the file is saved.

q: quits vim. You can combine commands, such as typing wq to write the file to disk and quit
at the same time.



4 FALL 2021, COMP 211, LAB 1: INTRODUCTION AND FIRST C PROGRAM

Source	code	
files	(.c)

Pre-processor:	remove	comments,	expand	macros	and	included	files

Compiler:	generate	assembly	code	from		pre-processor	output	

Assembler:	convert	assembly	code	into	binary	(or	object)	code

Linker:	Link	object	code	with	library	code,	merge	into	one	file		

Assembly	
code	files

Object	files	
(.o)

Libraries	
(e.g.,	stdio.h)

Executable	
file

Figure 2. Overview of the compilation process for C programs.

vim is extremely powerful, and has many more key combinations to help you quickly move around
a file and manipulate text. See the resources link on the class webpage to find out more about how
to use vim effectively.

Now, using vim, create a file named about.txt in the lab1 directory you created earlier, contain-
ing the information shown in Figure 1, replacing the questions with your answers. First, change
Name to your name. Then provide your Class year at the appropriate location. Then answer
the question about prior programming experience on a line following the question, leaving a blank
line between the question and your answer. Finally, delete the Something interesting block of
text and replace it with your response. Please email to me the file you create by the end of lab:
vumanfredi@wesleyan.edu.

5. Creating and compiling your first C program: helloworld.c

In your lab1 directory, open a new file using vim by typing vim helloworld.c, which will
contain your first C program. In this file, type in the program shown in Program 1. Note that
everything between /* */ is considered a comment in C, and you need not type the comments in.

In the terminal, making sure you are in the same lab1 directory as the file you just created, type
the following at the command-line to compile your program.



FALL 2021, COMP 211, LAB 1: INTRODUCTION AND FIRST C PROGRAM 5

1 /* Include functions from standard input/output library such as printf */

2 #include <stdio .h>

3

4 /* Every program you write must have a main: this is where your C program

5 * begins operating. In C, main is a special function.

6 */

7 int main(void)

8 {
9 /* The main function calls the library function printf to print hello

10 * world. \n is an escape sequence meaning new line. Escape sequences are

11 * useful for hard to type and invisible characters.

12 */

13 printf("Hello World!\n") ;

14

15 return 0 ;

16 } /* Statements of main function are enclosed in curly brackets */

Program 1. helloworld.c.

gcc helloworld.c

This compiles your C program and creates a your program executable. Since we didn’t specify
the name of an output file, gcc automatically uses a.out as the name of the output. Now type the
following to run your program. The preceding ./ specifies the directory path to the file, indicating
that it is in current directory.

./a.out

Figure 2 overviews what happens during compilation; as the course progresses, we will see some
of the intermediate files generated once our programs become more complicated.


