
Wesleyan University, Fall 2021, COMP 211

Homework 8: Linked lists

Due by 11:59pm on Novemember 16, 2021

1. Written problems (5 points)

Problem 1. In Problem 2 you will implement a function to perform a linearity check on a linked-
list: if the linked-list is linear, the function returns true, otherwise the function returns false.

In this problem, you will analyze the cost of the linearity check you implemented. If the number
of nodes in the linked list is n, give the cost of your linearity check algorithm in terms of n and
explain how you computed that cost. You must include your code for Problem 2 in your write-up
as well as in hw8.c. This will greatly facilitate our checking of your cost computation.

Solution: One approach you may have taken in Problem 2 is to loop through the linked list, and
for each node, n, loop through the linked list again (until the node just prior to node n), comparing
the address of each node to that of node n. If the addresses ever match, you have a loop. In this
case, you have an inner loop that has a constant-cost body and iterates up to n times (where n is
the number of nodes), for a total cost of O(n). The cost of the body of the outer loop is the cost
of executing the inner loop, so O(n), and the outer loop is also iterated up to n times, so the total
cost is O(n2).

Alternatively, you might have implemented a more efficient approach where you loop through
the linked list keeping track of two pointers into the list, advancing one pointer one node at a
time and the other pointer two nodes at a time. If the two pointers are ever equal, or if the faster
pointer’s next node address ever equals the slower pointer then there is a loop. If either pointer
ever reaches the end of the list, then the list is linear. Because we only loop through the linked list
once (albeit doing a larger constant time amount of work), the cost is O(n). To see the intuition for
this, consider the following. First, ignore the time spent for the tortoise to enter the loop (which
is at most n). We’ll instead consider the situation when the tortoise enters the loop, call this node
0. Then let x be location of the hare in the loop when the tortoise enters the loop: specifically x
is how many nodes the hare is behind the tortoise. After t iterations (i.e., t nodes are traversed),
the tortoise will be at location t mod λ and the hare will be at location (2t − x) mod λ. How
many iterations, t, will it take before the location of the hare equals that of the tortoise? Until t
mod λ = (2t− x) mod λ. Solving for t we get t = x, which means after x iterations, the hare and
the tortoise will meet. Since x is upper-bounded by λ and λ is upper-bounded by n, then the cost
is O(n).

2. Programming problems (15 points)

Problem 2. In this problem you will implement a linearity test to check that a linked-list is linear
(that is, traversing next fields results no loops and eventually gets to a NULL node). Such a test
is important for checking the correctness of functions: any operations performed on a linked-list
should maintain the linearity of the linked-list.

Your function will take the head of a linked-list as input, and return true if the linked-list is linear
and return false if the linked-list is non-linear. By non-linear, we mean that as you loop through
the linked-list, eventually one of the nodes visited is a node that has already been visited before.

1



2 FALL 2021, COMP 211, HOMEWORK 8: LINKED LISTS

The linearity function has been specified for you in hw8.h. I have already specified a linked-list
node type for you (struct qnode) in hw8.h.

Hint 1: You can compare two variables of type pointer to check for equality. If the values of the
pointers (i.e. addresses contained in them) are the same, then the pointers really do contain the
same memory address and the == operator will return true.

Hint 2: A straightforward algorithm to check linearity compares each node to all of the nodes
preceding it. There is also a less straightforward but more efficient algorithm in which two pointers
both traverse the list, one pointer traversing the list twice as fast as the other pointer. If either
pointer ever reaches the end of the list then the list is linear. If the two pointers ever end up on
the same node, then the list is not linear.

Problem 3. Use a linked-list to implement a queue (an ordinary queue, not a priority queue). In
a bit more detail, you will implement the following:

• qnode structure: an individual element in the queue. Note that this struct has already
been implemented for you.

• queue structure: a structure with a qnode field that represents the linked-list that repre-
sents the queue, along with any other fields you need.

• create function: initialize a new queue.

• is empty function: check whether the queue is empty.

• enqueue function: add an element to the back of queue. Your function should take constant
time.

• dequeue function: remove an element from the front of the queue. Your function should
take constant time.

• as array function: fill an array with the contents of the queue.

• size function: return the size of the queue. For full credit, your function should be constant
time, although a linear-time solution will receive some credit.

• print function: print all of the elements in the queue.

The functions are specified in hw8.h, and you will implement them in hw8.c. Using the function
you wrote in Problem 2, add asserts to your code to check for linearity before your enqueue and
dequeue functions return. The header file hw8.h has an empty definition of a queue structure; it
is up to you to fill in the details. Do not modify any other part of hw8.h.

3. Code distribution

As usual, the code distribution contains a driver program (make driver) and a tests program
(make tests). The driver program is used to build a queue using your implementation. Make sure



FALL 2021, COMP 211, HOMEWORK 8: LINKED LISTS 3

$ ./driver
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 1
Queue contents:
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 2
Enter character: a
Queue contents:
Q: a
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 2
Enter character: b
Queue contents:
Q: a b
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 2
Enter character: c
Queue contents:
Q: a b c

(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 2
Enter character: 3
Queue contents:
Q: a b c 3
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 3
Queue contents:
Q: b c 3
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 3
Queue contents:
Q: c 3
(0) Exit
(1) Create queue
(2) Enqueue character
(3) Dequeue character
(4) Print queue
Enter choice: 2
Enter character: g
Queue contents:
Q: c 3 g

Figure 1. A sample session using the linked-list-backed queue driver program.

to test your is_linear function on lists that are linear and on lists that are not! Figure 1 shows
a sample session using the driver.

4. Submission

Submit your written work as hw8.pdf and your programming problem as hw8.h and hw8.c to the
Google Drive directory I have created for you named comp211-f21-USERNAME/hw8/. You should
replace USERNAME with your Wesleyan username.

Do not forget that your written work must be submitted as a PDF! And make sure that at the
top of each file you have put your name! Do not, however, change the names of the files.


